Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Estimating maximum limits to mutagenic potency from cytotoxic potency

Abstract

RAPID and reliable screening methods are required for identifying environmental mutagens and estimating their mutagenic potency in preparation for use of more elaborate tests to assess the genetic risk to man. Many compounds are effectively screened by in vitro mutagenesis assays using either bacterial or mammalian cells. Although tests with mammalian cells are not as rapid and inexpensive as microbial assays, they are needed to confirm and extend the bacterial results, and probably provide a better assessment of potential risk to humans than do microbial tests. However, the screening of all potential mutagens with mammalian cell mutagenicity assays, although desirable, does not seem feasible unless, as we propose, test compounds are first pre-screened on the basis of their cytotoxic potency. On theoretical grounds, one expects a certain minimum cytotoxic potency to correlate with mutagenic potency, particularly when the latter is measured using forward mutations that result in inactive gene products. Specifically, cells cannot divide unless a substantial fraction of their genome is functionally intact; mutagenic agents should thus be obligatory cytotoxic agents, with a given mutagenicity conferring a certain irreducible cytotoxicity. We show here that the cytotoxic potency of 22 chemical mutagens is highly correlated with their mutagenic potency as assayed in five rodent and human in vitro cell systems. This relationship implies that the maximum potential mutagenic potency of such compounds may be reliably estimated from rapid and straightforward measurements of their cytotoxic potency, the latter defined as the failure of cultured cells to undergo continued cell division. The estimate is necessarily a maximum one, as an agent may exert cytotoxic effects by pathways independent of its mutagenic action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thacker, J., Stretch, A. & Stephens, M. A. Mutat. Res. 42, 313–326 (1977).

    CAS  PubMed  Google Scholar 

  2. Chadwick, K. H., Leenhouts, H. P., Szumiel, I. & Nias, A. H. W. Int. J. Radiat. Biol. 30, 511–524 (1976).

    CAS  Google Scholar 

  3. Parodi, S. & Brambilla, G. Mutat. Res. 47, 53–74 (1977).

    CAS  PubMed  Google Scholar 

  4. Munson, R. J. & Goodhead, D. T. Mutat. Res. 42, 145–160 (1977).

    CAS  PubMed  Google Scholar 

  5. Roberts, J. J. in Advances in Radiation Biology (eds Lett, J. T. & Adler, H.) 212–436 (Academic, New York, 1978).

    Google Scholar 

  6. Roberts, J. J., Sturrock, J. E. & Ward, K. N. in Chemical Carcinogenesis Part A (eds Ts'o, P. O. & Dipaolo, J. A.) 401–425 (Marcel Dekker, New York, 1974).

    Google Scholar 

  7. Carver, J. H., Wandres, D. L., Adair, G. M. & Branscomb, E. W. Mutat. Res. 53, 96–97 (1978).

    Google Scholar 

  8. Carver, J. H., Dewey, W. C. & Hopwood, L. E. Mutat. Res. 34, 465–480 (1976).

    CAS  PubMed  Google Scholar 

  9. Couch, D. B. & Hsie, A. W. Mutat. Res. 57, 209–216 (1978).

    CAS  PubMed  Google Scholar 

  10. Couch, D. B., Forbes, N. L. & Hsie, A. W. Mutat. Res. 57, 217–224 (1978).

    CAS  PubMed  Google Scholar 

  11. Hsie, A. W., Brimer, P. A., Mitchell, T. J. & Gosslee, D. S. Somatic Cell Genet. 1, 247–261 (1975).

    CAS  PubMed  Google Scholar 

  12. Jones, G. E. & Sargent, P. A. Cell 2, 43–54 (1974).

    CAS  PubMed  Google Scholar 

  13. Molnar, S. J. & Rauth, A. M. Mutat. Res. 41, 361–376 (1976).

    CAS  PubMed  Google Scholar 

  14. O'Neill, J. P., Fuscoe, J. C. & Hsie, A. W. Cancer Res. 38, 506–509 (1978).

    CAS  PubMed  Google Scholar 

  15. Abbondandolo, A. et al. Mutat. Res. 37, 293–306 (1976).

    CAS  PubMed  Google Scholar 

  16. Arlett, C. F., Turnbull, D., Harcourt, S. A., Lehmann, A. R. & Colella, C. M. Mutat. Res. 33, 261–278 (1975).

    CAS  PubMed  Google Scholar 

  17. Bhuyan, B. K., Peterson, A. R. & Heidelberger, C. Chem.-Biol. Interactions 13, 173–179 (1976).

    CAS  Google Scholar 

  18. Davies, P. J. & Parry, J. Genet. Res. 24, 311–314 (1974).

    CAS  PubMed  Google Scholar 

  19. Duncan, M. E. & Brookes, P. Mutat. Res. 21, 107–118 (1973).

    CAS  PubMed  Google Scholar 

  20. Huberman, E. Mutat. Res. 29, 285–291 (1975).

    CAS  PubMed  Google Scholar 

  21. Huberman, E., Aspiras, L., Heidelberger, C., Grover, P. L. & Sims, P. Proc. natn. Acad. Sci. U.S.A. 68, 3195–3199 (1971).

    ADS  CAS  Google Scholar 

  22. Huberman, E. & Sachs, L. Proc. natn. Acad. Sci. U.S.A. 73, 188–192 (1976).

    ADS  CAS  Google Scholar 

  23. Kuroki, T., Drevon, C. & Montesano, R. Cancer Res. 37, 1044–1050 (1977).

    CAS  PubMed  Google Scholar 

  24. Newbold, R. F. & Brookes, P. Nature 261, 52–54 (1976).

    ADS  CAS  PubMed  Google Scholar 

  25. Peterson, A. R. et al. Mutat. Res. 36, 345–356 (1976).

    CAS  PubMed  Google Scholar 

  26. van Zeeland, A. A. & Simons, J. W. I. M. Mutat. Res. 35, 129–138 (1976).

    CAS  PubMed  Google Scholar 

  27. Wild, D. Mutat. Res. 31, 197–199 (1975).

    CAS  PubMed  Google Scholar 

  28. Clive, D., Flamm, W. G., Machesko, M. R. & Bernheim, N. J. Mutat. Res. 16, 77–87 (1972).

    CAS  PubMed  Google Scholar 

  29. Cole, J. & Arlett, C. F. Mutat. Res. 34, 507–526 (1976).

    CAS  PubMed  Google Scholar 

  30. Cole, J. & Arlett, C. F. Mutat. Res. 50, 111–120 (1978).

    CAS  PubMed  Google Scholar 

  31. Frantz, C. N. J. Tox. envir. Hlth 2, 179–187 (1976).

    CAS  Google Scholar 

  32. Albertini, R. J. & DeMars, R. Mutat. Res. 18, 199–224 (1973).

    CAS  PubMed  Google Scholar 

  33. Cox, R. & Masson, W. K. Mutat. Res. 37, 125–136 (1976).

    CAS  PubMed  Google Scholar 

  34. Jacobs, L. & DeMars, R. Mutat. Res. 53, 29–53 (1978).

    CAS  PubMed  Google Scholar 

  35. Kuroda, Y. Jap. J. Genet. 49, 389–398 (1974).

    Google Scholar 

  36. Kuroda, Y. Mutat. Res. 30, 229–238 (1975).

    CAS  PubMed  Google Scholar 

  37. Maher, V. M., McCormick, J. J., Grover, P. L. & Sims, P. Mutat. Res. 43, 117–138 (1977).

    CAS  PubMed  Google Scholar 

  38. Maher, V. M., Ouelette, L. M., Curren, R. D. & McCormick, J. J. Nature 261, 593–594 (1976).

    ADS  CAS  PubMed  Google Scholar 

  39. Penman, B. W. & Thilly, W. G. Somatic Cell Genet. 2, 325–330 (1976).

    CAS  PubMed  Google Scholar 

  40. Thilly, W. G., Deluca, J. G., Hoppe, H. IV & Penman, B. W. Mutat. Res. 50, 137–144 (1978).

    CAS  PubMed  Google Scholar 

  41. Williams, J. I. & Cleaver, J. E. Biophys. J. 22, 265–279 (1978).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aaron, C. S., van Zeeland, A. A., Mohn, G. R. & Natarajan, A. T. Mutat. Res. 50, 419–426 (1978).

    CAS  PubMed  Google Scholar 

  43. Bradley, M. O. & Sharkey, N. A. Nature 274, 607–608 (1978).

    ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CARVER, J., HATCH, F. & BRANSCOMB, E. Estimating maximum limits to mutagenic potency from cytotoxic potency. Nature 279, 154–156 (1979). https://doi.org/10.1038/279154a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing