Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Changes in the uncrossed retinotectal projection after removal of the other eye at birth

Abstract

THE connections between the eyes and the brain are so arranged as to give an orderly representation in the brain, of the visual field. The mechanisms involved in this ordering have been extensively studied, particularly in the retinotectal pathway of submammalian vertebrates1–3. In these species the optic nerves decussate almost completely, retinal ganglion cells in one eye connecting only with the opposite tectum. In mammals, however, there is partial decussation at the optic chiasma, so that the superior colliculus receives optic fibres from both eyes. Binocular representation poses a problem for the ordering of retinotectal projections. If one point on the tectum is to correspond to only one point in visual space, seen through both eyes, the mapping rules onto the tectum must have opposing polarities in the two eyes, along the nasotemporal axis. This is shown in Fig. 1 : a rostral movement in the colliculus corresponds to a temporal movement on the contralateral retina but a nasal movement on the ipsilateral retina. Little is known about the factors determining the topography of the direct ipsilateral projection to the mammalian superior colliculus. Anatomical studies in rodents have shown that neonatal removal of one eye induces an increased projection from the remaining eye to the ipsilateral colliculus4,5. These aberrant uncrossed optic fibres are derived from all regions of the retina and apparently have a distribution appropriate for a normal contralateral projection, that is, the nasotemporal retinal axis is represented caudorostrally6. The only published physiological study investigating the topography (in enucleated rats) confirmed the anatomy as regards the nasotemporal axis but, surprisingly, found the dorsoventral axis reversed over most of the colliculus ipsilateral to the remaining eye7. Here I present results on the enucleated hamster showing that the colliculus ipsilateral to the remaining eye contains a double representation of the visual field displaying mirror-image polarity along the nasotemporal axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gaze, R. M. The Formation of Nerve Connections (Academic, London, 1970).

    MATH  Google Scholar 

  2. Keating, M. J. in Neural and Behavioural Specificity (ed. Gottlieb G.), 59–110 (Academic, New York, 1976).

    Book  Google Scholar 

  3. Lund, R. D. Development and Plasticity of the Brain. An Introduction (Oxford University Press. New York, 1978).

    Google Scholar 

  4. Lund, R. D., Cunningham, T. J. & Lund, J. S. Brain behav. Evolut. 8, 51–72, (1973).

    Article  CAS  Google Scholar 

  5. Frost, D. O. & Schneider, G. E. Neurosci. Abstr. 2, 812, (1976).

    Google Scholar 

  6. Lund, R. D. & Lund, J. S. J. comp. Neurol. 169, 133–154 (1976).

    Article  CAS  Google Scholar 

  7. Cunningham, T. J. & Speas, G. Brain Res. 88, 73–79 (1975).

    Article  CAS  Google Scholar 

  8. Lund, R. D. Expl Eye Res. 21, 193–203 (1975).

    Article  CAS  Google Scholar 

  9. Tiao, Y.-C. & Blakemore, C. J. comp. Neurol. 168, 459–482 (1976).

    Article  CAS  Google Scholar 

  10. Merrill, E. G. & Ainsworth, A. Med. biol. Engng 10, 662–672 (1972).

    Article  CAS  Google Scholar 

  11. Tiao, T.-C. & Blakemore, C. J. comp. Neurol. 168, 483–504 (1976).

    Article  CAS  Google Scholar 

  12. Chalupa, L. M. & Rhoades, R. W. J. Physiol., Lond. 270, 595–626 (1977).

    Article  CAS  Google Scholar 

  13. Rhoades, R. W. & Chalupa, L. M. J. comp. Neurol. (in the press).

  14. Findlay, B. L., Schneps, S. E., Wilson, K. G. & Schneider, G. E. Brain Res. 142, 223–235 (1978).

    Article  Google Scholar 

  15. Guillery, R. W. & Kaas, J. H. J. comp. Neurol. 143, 73–100 (1971).

    Article  CAS  Google Scholar 

  16. Weber, J. T., Kass, J. H. & Harting, J. K. Brain Res. 148, 189–196 (1978).

    Article  CAS  Google Scholar 

  17. Lund, R. D., Lund, J. S. & Wise, R. P. J. comp. Neurol. 158, 383–404 (1974).

    Article  CAS  Google Scholar 

  18. Levine, R. L. & Jacobson, M. Brain Res. 98, 172–176 (1975).

    Article  CAS  Google Scholar 

  19. Glastonbury, J. & Straznicky, K. Neurosci. Lett. 7, 67–72 (1978).

    Article  CAS  Google Scholar 

  20. Lund, R. D. J. Anat. 100, 51–62 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Garey, L. J., Jones, E. G. & Powell, T. P. S. J. Neurol. Neurosurg. Psychiat. 31, 135–57 (1968).

    Article  CAS  Google Scholar 

  22. Berman, N. & Cynader, M. J. Physiol. Lond. 245, 261–270 (1975).

    Article  CAS  Google Scholar 

  23. Cunningham, T. J. & Freeman, J. A. J. comp. Neurol. 172, 165–176 (1977).

    Article  CAS  Google Scholar 

  24. Cunningham, T. J. Science 194, 857–859 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

THOMPSON, I. Changes in the uncrossed retinotectal projection after removal of the other eye at birth. Nature 279, 63–66 (1979). https://doi.org/10.1038/279063a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279063a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing