Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transport of molecules in concentrated systems

Abstract

TRANSPORT of molecules in concentrated systems is of fundamental importance in medicine, biology and technology, for example, transport within cartilageneous tissues, the release and distribution within the body of encapsulated drugs and transport of reactants in the production process of plastic materials. These systems are usually multicomponent in nature. In all these processes the transport of substances often has a regulatory role as a rate determining step. An understanding of the transport process of macromolecules in multicomponent systems is therefore essential. Although problems of this type have been treated in a few theoretical1–7 and experimental8–20 studies, the understanding of these systems is incomplete, especially for concentrated solutions. It is known from studies of diffusion in binary systems that a number of features of the transport process appear that do not show up in more dilute systems7,10,18–20. We present here new data for macromolecular systems which show that the diffusion rate of one macromolecule can be ‘paradoxically’ increased considerably by adding a sufficient amount of a suitable second macromolecular component. An interpretation of this effect is advanced in terms of an extension of existing theories of concentrated solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katchalsky, A. & Curran, P. F. Non-equilibrium Thermodynamics in Biophysics (Harvard University Press, Cambridge, Mass. 1965).

    Book  Google Scholar 

  2. Sundelöf, L.-O. & Södervi, I. Arkiv. Kemi 21, 143–160 (1963).

    Google Scholar 

  3. Kirkaldy, J. S. & Purdy, G. R. Can. J. Phys. 47, 865–871 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Sundelöf, L.-O. Chem. Zvesti 25, 203–214 (1971).

    Google Scholar 

  5. Ogston, A. G., Preston, B. N. & Wells, J. E. Proc. R. Soc. A333, 297–309 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Haase, R. in Ultracentrifugal Analysis in Theory and Experiment (ed. Williams, J. W.) 13–28 (Academic, New York, 1963).

    Book  Google Scholar 

  7. Sundelöf, L.-O. Berichte Bunsen Ges. (in the press).

  8. Gosting, L. J. Adv. Protein Chem. 11, 429–554 (1956).

    Article  CAS  Google Scholar 

  9. Laurent, T. C., Björk, I., Pietruszkiewicz, A. & Persson, H. Biochim biophys. Acta 78, 351–359 (1963).

    Article  CAS  Google Scholar 

  10. Rehage, G. & Ernst, O. Dechema Monogr. 49, 157–180 (1964).

    CAS  Google Scholar 

  11. Cussler, Jr., E. L. & Lightfoot, E. N. J. phys. Chem. 69, 1135–1148 (1965).

    Article  CAS  Google Scholar 

  12. Laurent, T. C. Fedn. Proc. 25, 1128–1134 (1966).

    CAS  Google Scholar 

  13. Johnsen, R. M. Chemica Scripta 2, 31–34 (1972).

    CAS  Google Scholar 

  14. Preston, B. N. & Snowden, J. McK. Proc. R. Soc. A333, 311–313 (1973).

    Google Scholar 

  15. Preston, B. N. & Snowden, J. McK. in Biology of Fibroblast (eds Kulonen, E. & Pikkarainen, J.) 215–230 (Academic, New York, 1973).

    Google Scholar 

  16. Laurent, T. C., Preston, B. N., Pertoft, H., Gustafsson, B. & McCabe, M. Eur. J. Biochem. 53, 129–136 (1975).

    Article  CAS  Google Scholar 

  17. Kitchen, R. G. thesis, Monash Univ. (1975).

  18. Laurent, T. C., Sundelöf, L.-O., Wik, K. O. & Wärmegård, B. Eur. J. Biochem. 68, 95–102 (1976).

    Article  CAS  Google Scholar 

  19. Bergman, R. & Sundelöf, L.-O. Eur. Polymer J. 13, 881–889 (1977).

    Article  CAS  Google Scholar 

  20. Roots, J., Nyström, B., Porsch, B. & Sundelöf, L.-O. Polymer (in the press).

  21. De Groot, D. R. & Mazur, P. Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    MATH  Google Scholar 

  22. Onsager, L. Ann. N.Y. Acad. Sci. 46, 241–265 (1945).

    Article  ADS  CAS  Google Scholar 

  23. Edmond, E. & Ogston, A. G. Biochem. J. 109, 569–576 (1968).

    Article  CAS  Google Scholar 

  24. Sundelöf, L.-O. IUPAC Symp. Macromolecules Preprint 3, 343 (1972).

    Google Scholar 

  25. Kratochvíl, P. & Vorlí Vcek, J. J. Polymer Sci., Polymer Phys. Ed. 14, 1561–1566 (1976).

    Article  ADS  Google Scholar 

  26. Acosta, R., Nyström, B. & Sundelöf, L.-O. Chemica Scripta (in the press).

  27. Schachman, H. K. Ultracentrifugation in Biochemistry 90–103 (Academic, New York, 1959).

    Google Scholar 

  28. Simha, R. & Zakin, J. L. J. chem. Phys 33, 1791–1793 (1960).

    Article  ADS  CAS  Google Scholar 

  29. Preston, B. N. & Ogston, A. G. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LAURENT, T., PRESTON, B. & SUNDELÖF, LO. Transport of molecules in concentrated systems. Nature 279, 60–62 (1979). https://doi.org/10.1038/279060a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279060a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing