Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Construction of haloaromatics utilising bacteria

Abstract

LARGE amounts of novel organic compounds are released into the environment by the rapidly growing chemical industry. The main agents for returning natural and, presumably, synthetic organic compounds to the carbon cycle are bacteria and fungi, provided that catabolic enzymes with appropriate specificities, transport systems and regulatory mechanisms can be activated. One or several of these conditions for total degradation do not seem to be fulfilled for certain types of man-made compounds, in particular, the halogenated aromatic hydrocarbons. In this report, we demonstrate the transfer of the TOL plasmid from Pseudomonas putida mt-2 (WR 101) to Pseudomonas sp. B13 (WR 1) enabling novel strains to be isolated which can utilize various chlorosubstituted benzoates as their sole source of carbon and energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dorn, E. et al. Archs Microbiol. 99, 61–70 (1974).

    Article  Google Scholar 

  2. Knackmuss, H.-J. & Hellwig, M. Archs Microbiol. 117, 1–7 (1978).

    Article  CAS  Google Scholar 

  3. Reineke, W. & Knackmuss, H.-J. Biochim. biophys. Acta 542, 412–423 (1978).

    Article  CAS  Google Scholar 

  4. Reineke, W. & Knackmuss, H.-J. Biochim. biophys. Acta 542, 424–429 (1978).

    Article  CAS  Google Scholar 

  5. Dorn, E. & Knackmuss, H.-J. Biochem. J. 174, 85–94 (1978).

    Article  CAS  Google Scholar 

  6. Williams, P. A. & Murray, K. J. Bact. 120, 416–423 (1974).

    CAS  PubMed  Google Scholar 

  7. Wong, C. L. & Dunn, N. W. Genet. Res. 23, 227–232 (1974).

    Article  CAS  Google Scholar 

  8. Wu, T. T. et al. J. Bact. 96, 447–456 (1971).

    Google Scholar 

  9. Oliver, E. J. & Mortlock, R. P. J. Bact. 108, 293–299 (1971).

    CAS  Google Scholar 

  10. Betz, J. L. et al. Nature 247, 261–264 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Senior, E. et al. Nature 263, 476–479 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Wood, W. A. A. Rev. Biochem. 35, 521–558 (1966).

    Article  CAS  Google Scholar 

  13. Le Blanc, D. J. & Mortlock, R. P. J. Bact. 106, 90–96 (1971).

    CAS  Google Scholar 

  14. Rigby, P. W. J. et al. Nature 251, 200–204 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Chakrabarty, A. M. A. Rev. Genet. 10, 7–30 (1976).

    Article  CAS  Google Scholar 

  16. Pemberton, J. M. & Fisher, P. R. Nature 268, 732–733 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

REINEKE, W., KNACKMUSS, HJ. Construction of haloaromatics utilising bacteria. Nature 277, 385–386 (1979). https://doi.org/10.1038/277385a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277385a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing