Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells

Abstract

ADENOSINE stimulates the accumulation of cyclic AMP in some tissues and cell types, but has inhibitory or biphasic effects on the accumulation of cyclic AMP in other cells. Londos and Wolff1 have attempted to explain these diverse effects by the existence of two adenosine reactive sites on adenylate cyclase. The first is the R-site, occupancy of which usually leads to activation on adenylate cyclase and which for activity requires integrity of the ribose ring. Much evidence suggests that this site is identical to an extracellular receptor for adenosine2–6. The second type is the P-site, which mediates inhibition of adenylate cyclase and requires integrity of the purine ring for activity. Preliminary evidence suggests that this site is only accessible from the interior of the cell1,3. However, we report here that the inhibition by adenosine of the increase in the intracellular level of cyclic AMP evoked by isoprenaline in cultured glioblasts is mediated by extracellular receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Londos, C. & Wolff, J. Proc. natn. Acad. Sci. U.S.A. 74, 5482–5486 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Clark, R. B., Gross, R., Su, Y.-F. & Perkins, J. P. J. biol. Chem. 249, 5296–5303 (1974).

    CAS  PubMed  Google Scholar 

  3. Haslam, R. J. & Rosson, G. M. Molec. Pharmac. 11, 528–544 (1975).

    CAS  Google Scholar 

  4. Huang, M. & Daly, J. W. Life Sci. 14, 489–503 (1974).

    Article  CAS  Google Scholar 

  5. Clark, R. B. & Seney, M. N. J. biol. Chem. 251, 4239–4246 (1976).

    CAS  PubMed  Google Scholar 

  6. Sturgill, T. W., Schrier, B. K. & Gilman, A. G. J. Cyclic Nucleotide Res. 1, 21–30 (1975).

    CAS  Google Scholar 

  7. Van Calker, D., Müller, M. & Hamprecht, B. J. Neurochem. 30, 713–718 (1978).

    Article  CAS  Google Scholar 

  8. Booher, J. & Sensenbrenner, M. Neurobiology 2, 97–105 (1972).

    CAS  PubMed  Google Scholar 

  9. Lim, R., Mitsunobu, K. & Li, W. K. P. Expl Cell Res. 79, 243–246 (1973).

    Article  CAS  Google Scholar 

  10. Schousboe, A., Fosmark, H. & Svenneby, G. Brain Res. 116, 158–164 (1976).

    Article  CAS  Google Scholar 

  11. Van Calker, D. thesis, Univ. Munich (1977).

  12. Laerum, O. D., Bigner, D. D. & Rajewski, M. F. (eds) Biology of Brain Tumors Int. Un. Against Cancer Tech. Rep. Ser. 30, 143–157 (Geneva, 1978).

  13. Bock, E., Møller, M., Nissen, C. & Sensenbrenner, M. FEBS Lett. 83, 207–211 (1977).

    Article  CAS  Google Scholar 

  14. Lim, R., Turriff, D. E., Troy, S. S., Moore, B. W. & Eng, L. F. Science 195, 195–196 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Breen, G. A. M. & de Vellis, J. Devl Biol. 41, 255–266 (1974).

    Article  CAS  Google Scholar 

  16. Brandt, M. et al. Nature 262, 311–312 (1976).

    Article  ADS  Google Scholar 

  17. Sattin, A. & Rall, T. W. Molec. Pharmac. 6, 13–23 (1970).

    CAS  Google Scholar 

  18. Zenser, T. V., Biochim. biophys. Acta. 404, 202–213 (1975).

    Article  CAS  Google Scholar 

  19. Blume, A. J., Dalton, C. & Sheppard, H. Proc. natn. Acad. Sci. U.S.A. 70, 3099–3102 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Penit, J., Huot, J. & Jard, S. J. Neurochem. 26, 265–273 (1976).

    Article  CAS  Google Scholar 

  21. Schultz, J. & Hamprecht, B. Naunyn-Schmiedeberg's Arch. Pharmac. 278, 215–225 (1973).

    Article  CAS  Google Scholar 

  22. Sheppard, H. & Wiggan, G. Molec. Pharmac. 7, 111–115 (1970).

    Google Scholar 

  23. Green, R. D. & Stanberry, L. R. Biochem. Pharmac. 26, 37–43 (1977).

    Article  CAS  Google Scholar 

  24. Gilman, A. G. & Schrier, B. K. Molec. Pharmac. 8, 410–416 (1972).

    CAS  Google Scholar 

  25. Fain, J. N., Pointer, R. H. & Ward, W. F. J. biol. Chem. 247, 6866–6872 (1972).

    CAS  PubMed  Google Scholar 

  26. Fain, J. N. Molec. Pharmac. 9, 595–604 (1973).

    CAS  Google Scholar 

  27. Fain, J. N. & Wieser, P. B. J. biol. Chem. 250, 1027–1034 (1975).

    CAS  PubMed  Google Scholar 

  28. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CALKER, D., MÜLLER, M. & HAMPRECHT, B. Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 276, 839–841 (1978). https://doi.org/10.1038/276839a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276839a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing