Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Internal motions of antibody molecules

Abstract

ANTIBODY molecules of the IgG class are composed of three covalently linked regions1,2. Two of these (designated Fab) are identical and bind antigen; the third (Fc) has been identified as the site of antibody effector functions (for example, complement fixation), which are activated by antigen binding3. There is evidence that the binding of antigen to the Fab region induces an allosteric transition in IgG and that this transition may be a step in the effector activation process4. The findings of Pecht et al.5 indicate that for complement fixation both Fab regions must bind antigen, even though binding to one induces some conformational change in Fc. Binding of hapten does not lead to complement fixation in general, but some exceptions to this rule are known6. The interchain disulphide bridges must be intact for Fab ligand binding to have a productive effect on the Fc region7,8. Both the Fab and Fc regions have a domain structure; each consists of a pair of compact lobes covalently linked by strands of polypeptide chains9. A schematic diagram of the connectivity of the IgG lobes is given by Padlan10. One of the fundamental questions involved in antibody function is the nature of the mechanism by which binding of antigen to the Fab regions affects the Fc region. Huber et al. have recently outlined a possible allosteric model for the activation step on the basis of X-ray and other data9. In this note we use simple diffusion arguments to estimate the characteristic times associated with the Huber proposal. Since the analysis deals only with the relative motion of the IgG domains, it is possible that slower intradomain structural changes are also involved in the activation process; if so, the estimated characteristic times would be lower bounds for the activation time. The role of conformational transitions in effector function activation is still in dispute11, but we note that the diffusional model may be useful for analysing other dynamical phenomena in immunoglobulins, such as their fluorescence depolarisation behaviour12–14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Porter, R. R. Biochem. J. 73, 119–126 (1959).

    Article  CAS  Google Scholar 

  2. Edelman, G. M. et. al. Proc. natn. Acad. Sci. U.S.A. 63, 78–85 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Beale, D. & Feinstein, A. Q. Rev. Biophys. 9, 135–180 (1976).

    Article  CAS  Google Scholar 

  4. Givol, D. in Receptors and Recognition A (eds Cuatrecasas, P. & Greaves, M. F.) 27–29 (Halsted, New York, 1976).

    Google Scholar 

  5. Pecht, I., Ehrenberg, B., Calef, E. & Arnon, R. Biochem. biophys. Res. Commun. 74, 1302–1310 (1977).

    Article  CAS  Google Scholar 

  6. Goers, J. W., Schumaker, V. N., Glovsky, M. M., Rebek, J. & Müller-Eberhard, H. J. J. biol. Chem. 250, 4918–4925 (1975).

    CAS  PubMed  Google Scholar 

  7. Schur, P. H. & Christian, G. D. J. exp. Med. 120, 531–545 (1964).

    Article  CAS  Google Scholar 

  8. Schlessinger, J., Steinberg, I. Z., Givol, D., Hochman, J. & Pecht, I. Proc. natn. Acad. Sci. U.S.A. 72, 2775–2779 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Huber, R., Deisenhofer, J., Colman, P. M., Matsushima, M. & Palm, W. Nature 264, 415–420 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Padlan, E. A. Q. Rev. Biophys. 10, 35–65 (1977).

    Article  CAS  Google Scholar 

  11. Metzger, H. Adv. Immun. 18, 169–203 (1974).

    Article  CAS  Google Scholar 

  12. Yguerabide, J., Epstein, H. F. & Stryer, L. J. molec. Biol. 51, 573–590 (1970).

    Article  CAS  Google Scholar 

  13. Wahl, P. Biochim. biophys. Acta 175, 55–64 (1969).

    Article  CAS  Google Scholar 

  14. Holowka, D. A. & Cathou, R. E. Biochemistry 15, 3379–3390 (1976).

    Article  CAS  Google Scholar 

  15. McCammon, J. A., Gelin, B. R., Karplus, M. & Wolynes, P. G. Nature 262, 325–326 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Adam, G. & Delbrück, M. in Structural Chemistry and Molecular Biology (eds Rich, A. & Davidson, N.) 198–215 (Freeman, San Francisco, 1968).

    Google Scholar 

  17. McCammon, J. A. & Wolynes, P. G. J. chem. Phys. 66, 1452–1456 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Wolynes, P. G. & McCammon, J. A. Macromolecules 10, 86–87 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Wallach, D. J. chem. Phys. 47, 5258–5268 (1967).

    Article  ADS  CAS  Google Scholar 

  20. Karplus, M. & Weaver, D. Nature 260, 404–406 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCAMMON, J., KARPLUS, M. Internal motions of antibody molecules. Nature 268, 765–766 (1977). https://doi.org/10.1038/268765a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268765a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing