Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium transients in frog slow muscle fibres

Abstract

MANY muscles in the frog contain slow as well as twitch muscle fibres, which differ in their innervation, electrical and contractile properties and fine structure1. Slow fibres give graded slow contractions with nerve stimulation, and can maintain a prolonged contracture when depolarised. There is evidence that contractile activation in slow fibres is mediated by a rise in myoplasmic calcium concentration2, but it is not clear whether this calcium originates from the sarcoplasmic reticulum, as in twitch fibres, or enters the fibre from the external solution1,3–5. We have used the calcium indicator dye arsenazo III (refs 6–9) to follow changes in intracellular free calcium concentration occurring during depolarisation of slow fibres, and find that the membrane potential dependence of these calcium transients in slow fibres is very similar to that observed in twitch fibres9. The time courses of the calcium transients in slow fibres are, however, very much slower than in twitch fibres9,10, and may be a major factor in determining the time courses of tension development and relaxation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lannergren, J. in Basic Mechanisms of Ocular Motility and their Clinical Implications (eds Lennerstrand, C. & Bach-y-Rita, P.) (Pergamon, Oxford, 1975).

    Google Scholar 

  2. Costantin, L. L., Podolsky, R. J. & Tice, L. W., J. Physiol., Lond. 188, 261–271 (1967).

    Article  CAS  Google Scholar 

  3. Kirby, A. C. Am. J. Physiol. 219, 1446–1450 (1970).

    CAS  PubMed  Google Scholar 

  4. Nasledov, G. A., Mandelstam, J. E. & Radzjukewich, T. L. Experientia 28, 1305–1306 (1972).

    Article  CAS  Google Scholar 

  5. Gilly, W. F. & Hui, C. S. Nature 266, 186–188 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Brown, J. E. et al. Biophys. J. 15, 1155–1160 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Dipolo, R. et al. J. gen. Physiol. 67, 433–467 (1976).

    Article  CAS  Google Scholar 

  8. Miledi, R., Parker, I. & Schalow, G. J. Physiol., Lond. 269, 11–13P (1977).

    Google Scholar 

  9. Miledi, R., Parker, I. & Schalow, G. Proc. R. Soc. B (in the press).

  10. Taylor, S. R., Rudel, R. & Blinks, J. R., Fedn Proc. 34, 1379–1381 (1975).

    CAS  Google Scholar 

  11. Stefani, E. & Steinbach, A. B. J. Physiol., Lond. 203, 383–401 (1969).

    Article  CAS  Google Scholar 

  12. Katz, B. & Miledi, R. J. Physiol., Lond. 192, 407–436 (1967).

    Article  CAS  Google Scholar 

  13. Lannergren, J. Acta. physiol., scand. 69, 362–372 (1967).

    Article  CAS  Google Scholar 

  14. Chandler, W. K., Rakowski, R. F. & Schneider, M. F. J. Physiol., Lond. 254, 285–316 (1976).

    Article  CAS  Google Scholar 

  15. Page, S. G. J. Cell Biol. 26, 477–497 (1965).

    Article  CAS  Google Scholar 

  16. Franzini-Armstrong, C. J. Cell Biol. 56, 120–128 (1973).

    Article  CAS  Google Scholar 

  17. Bailey, C. H. & Peachey, L. D. J. Cell Biol. 67, 15a (1975).

    Google Scholar 

  18. Kuffler, S. W. & Vaughan Williams, E. M. J. Physiol., Lond. 121, 318–340 (1953).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MILEDI, R., PARKER, I. & SCHALOW, G. Calcium transients in frog slow muscle fibres. Nature 268, 750–752 (1977). https://doi.org/10.1038/268750a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268750a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing