Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simple model for self-non-self-discrimination in invertebrates

Abstract

THE immune mechanisms which enable invertebrates to eliminate infectious agents are not well understood. There have been many reports, however, that invertebrates produce ‘recognition factors’ which interact with foreign substances and subsequently aid the phagocytosis of these substances1–5. Such recognition factors have been isolated from worms, molluscs, arthropods, echinoderms and protochordates, and have been shown to have agglutinating and bactericidal activities as well as opsonic properties. But, unlike the vertebrate immune system, there is little evidence for a memory component in the production of these factors3–5. The recognition factors are usually large molecules which can be readily dissociated into subunits and which in no way resemble the immunoglobulins present in vertebrates3–12. They apparently have specificity for carbohydrate structures and, in many cases, an individual has several distinct subpopulations of recognition factors which bind different sugar specificities3–12. The recognition factors seem to be synthesised by haemocytes in the haemolymph13,14. After secretion they can, in many invertebrate species, bind to the surface of haemocytes as well as persist in a soluble form in the haemolymph3–5,14–18. Both the soluble and cell-bound forms of the recognition factors can augment the phagocytosis of foreign substances. Thus, the invertebrates have evolved a simple recognition system which enables them to discriminate between ‘self’ and ‘non-self’. In this paper I propose that the recognition factors are composed of some of the glycosyl transferases which the invertebrate uses to synthesise its own carbohydrate side chains. Such a model guarantees the maintenance of rigid self non-self discrimination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tripp, M. R. J. Invert. Path. 8, 478–488 (1966).

    Article  CAS  Google Scholar 

  2. McKay, D., Jenkin, C. R. & Rowley, D. Aust. J. exp. Biol. med. Sci. 47, 125–134 (1969).

    Article  CAS  Google Scholar 

  3. Hildemann, W. H. & Reddy, A. L. Fedn Proc. 32, 2188–2194 (1973).

    CAS  Google Scholar 

  4. Cohen, E. & Uhlenbruck, G. (eds) Ann. N.Y. Acad. Sci. 234, (1974).

  5. Cooper, E. L. (ed.) Contemp. Topics Immunobiol. 4, (Plenum New York, 1974).

  6. Cohen, E., Trans. N.Y. Acad. Sci. 30, 427–443 (1968).

    Article  CAS  Google Scholar 

  7. Marchalonis, J. J. & Edelman, G. M. J. molec. Biol. 32, 453–465 (1968).

    Article  CAS  Google Scholar 

  8. Acton, R. T., Bennett, J. C., Evans, E. E. & Schrohenloher, R. E. J. biol. Chem. 244, 4128–4135 (1969).

    CAS  PubMed  Google Scholar 

  9. Pauley, G. B., Granger, G. A. & Krassner, S. M. J. Invert. Pathol. 18, 207–218 (1971).

    Article  CAS  Google Scholar 

  10. Jenkin, C. R. & Hardy, D. Adv. exp. Med. Biol. 64, 55–65 (1975).

    Article  CAS  Google Scholar 

  11. Hall, J. L. & Rowlands, D. T. Biochemistry 13, 821–827 (1974).

    Article  CAS  Google Scholar 

  12. Hall, J. L. & Rowlands, D. T. Biochemistry 13, 828–832 (1974).

    Article  CAS  Google Scholar 

  13. Marck, M. Comp. Biochem. Physiol. 35, 615–622 (1970).

    Article  Google Scholar 

  14. Amirante, G. A. Experientia 32, 526–528 (1976).

    Article  CAS  Google Scholar 

  15. Scott, M. T., Immunology 21, 817–828 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tyson, C. J. & Jenkin, C. R. Aust. J. exp. Biol. Med. Sci. 52, 341–348 (1974).

    Article  CAS  Google Scholar 

  17. Renwrantz, L. R. & Cheng, T. C. J. Invert. Pathol. 29, 88–96 (1977).

    Article  CAS  Google Scholar 

  18. Renwrantz, L. R. & Cheng, T. C. J. Invert. Pathol. 29, 97–100 (1977).

    Article  CAS  Google Scholar 

  19. Roseman, S. Chem. Phys. Lipids 5, 270–297 (1970).

    Article  CAS  Google Scholar 

  20. Karush, F. Ann. N.Y. Acad. Sci. 169, 56–62 (1970).

    Article  ADS  CAS  Google Scholar 

  21. Evans, E. E. et al. Nature 222, 696–697 (1969).

    ADS  Google Scholar 

  22. Evans, E. E., Painter, B., Evans, M. L., Weinheimer, P. & Acton, R. T. Proc. Soc. exp. Biol. Med. 128, 394–398 (1968).

    Article  CAS  Google Scholar 

  23. Cooper, E. L. Transplant. Proc. 2, 216–221 (1970).

    CAS  PubMed  Google Scholar 

  24. Duprat, P. C. Transplant. Proc. 2, 222–225 (1970).

    Google Scholar 

  25. Binz, H. & Wigzell, H. Scand. J. Immun. 5, 559–571 (1976).

    Article  CAS  Google Scholar 

  26. Shur, B. D. & Roth, S. Biochim. biophys. Acta. 415, 473–512 (1975).

    Article  CAS  Google Scholar 

  27. Albersheim, P. & Anderson-Prouty, A. J. A. Rev. Pl. Physiol. 26, 31–52 (1975).

    Article  CAS  Google Scholar 

  28. Morell, A. G., Gregoriadis, G., Scheinberg, I. H., Hickman, J. & Ashwell, G. J. biol. Chem. 246, 1461–1467 (1971).

    CAS  PubMed  Google Scholar 

  29. Hudgin, R. & Ashwell, G. J. biol. Chem. 249, 7369–7372 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PARISH, C. Simple model for self-non-self-discrimination in invertebrates. Nature 267, 711–713 (1977). https://doi.org/10.1038/267711a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267711a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing