Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells

Abstract

CYTOPLASMIC magnesium, whether free or complexed to nucleotides, has a fundamental physiological role as an essential cofactor for many cell enzymes, particularly those concerned with glycolysis, respiration and membrane transport. Various ingenious procedures have been applied to estimate1,2 or simulate3,4 intracellular conditions in relation to Mg but, because it is impossible to assess and control Mg2+ in the intact cell, most research on Mg requirements for metabolism and transport has used lysed cells5 and broken membrane preparations6,7, which have inherent uncertainties about true concentrations and sidedness of effects. Using a divalent cation ionophore8 and a newly developed method9,10 we have investigated Mg buffering in intact human red blood cells and have found that the fresh, oxygenated, inosine-fed cell (a condition frequently used for ion transport studies11–14) has three main buffer systems which bind nearly 90% of the total Mg present inside the cell in physiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Weer, P. J. gen. Physiol. 68, 159–178 (1976).

    Article  CAS  Google Scholar 

  2. Baker, P. F. & Crawford, A. C. J. Physiol., Lond. 227, 855–874 (1972).

    Article  CAS  Google Scholar 

  3. Berger, H., Jänig, G., Gerber, G., Ruckpaul, K. & Rapoport, S. M. Eur. J. Biochem. 38, 553–562 (1973).

    Article  CAS  Google Scholar 

  4. Gerber, G., Berger, H., Jänig, G. & Rapoport, S. M. Eur. J. Biochem. 38, 563–571 (1973).

    Article  CAS  Google Scholar 

  5. Bodemann, H. H. & Hoffman, J. F. J. gen. Physiol. 67, 547–561 (1976).

    Article  CAS  Google Scholar 

  6. Dunham, E. T. & Glynn, I. M. J. Physiol. Lond. 156, 274–293 (1961).

    Article  CAS  Google Scholar 

  7. Schatzmann, H. J. & Vincenzi, F. F. J. Physiol. Lond. 201, 369–395 (1969).

    Article  CAS  Google Scholar 

  8. Reed, P. W. & Lardy, H. A. J. Physiol. Chem. 247, 6970–6977 (1972).

    CAS  Google Scholar 

  9. Ferreira, H. G. & Lew, V. L. Nature 259, 47–49 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Lew, V. L. & Ferreira, H. G. Nature 263, 336–338 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Glynn, I. M., Lew, V. L. & Luthi, U. J. Physiol. Lond. 207, 371–391 (1970).

    Article  CAS  Google Scholar 

  12. Lew, V. L. Biochim. biophys. Acta 233, 827–830 (1971).

    Article  CAS  Google Scholar 

  13. Lew, V. L. in Comparative Biochemistry and Physiology of Transport (eds Bolis, L., Bloch, K., Luria, S. E. & Lynen, F.), 310–316 (North-Holland, Amsterdam, 1974).

    Google Scholar 

  14. Glynn, I. M. & Karlish, S. J. D. J. Physiol. Lond. 256, 465–496 (1976).

    Article  CAS  Google Scholar 

  15. Funder, J. & Wieth, J. D. Acta Physiol. Scand. 68, 234–345 (1966).

    Article  CAS  Google Scholar 

  16. Whittam, R. in Transport and Diffusion in Red Blood cells, 87 (Edward Arnold, London, 1964).

    Google Scholar 

  17. Deuticke, B., Duhm, J. & Dierkesmann, R. Pflügers Arch. 326, 15–34 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FLATMAN, P., LEW, V. Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells. Nature 267, 360–362 (1977). https://doi.org/10.1038/267360a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267360a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing