Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein evolution in cyanobacteria

Abstract

THERE has been a great deal written in recent years on evolutionary relationships between prokaryotes and eukaryotes1,2, and the possible origin of photosynthesis in eukaryotic cells by endosymbiosis of a cyanobacterium2,3. Molecular methods have been used in an attempt to elucidate the principal events in Precambrian cellular evolution. For example primary structures of plastocyanin4, cytochrome f5, and ferredoxin6,7 have been published. These sequences have been compared to primary structures of functionally analogous macromolecules from eukaryotes. Before conclusions on the evolutionary relationships between prokaryotic cyanobacteria and eukaryotic algae and plants can be made from one representative amino acid sequence, it is necessary to evaluate the amount of amino acid sequence variation in proteins isolated from a wide range of cyanobacteria. In this study the amount of variation in plastocyanins and in cytochromes f was investigated. The results from complete and partial amino acid sequence determinations on these proteins from a number of cyanobacteria, suggest that the rate of evolution of the proteins in oxygenic photosynthetic prokaryotes is much less than the rates of evolution of corresponding proteins in eukaryotic algae and higher plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allsopp, A., New Phytol., 68, 591–612 (1969).

    Article  Google Scholar 

  2. Marguilis, L., Origin of Eukaryotic Cells (Yale University Press, New Haven, 1970).

    Google Scholar 

  3. Taylor, F. J. R., Taxonomy, 23, 229–258 (1974).

    Article  Google Scholar 

  4. Aitken, A., Biochem. J., 149, 675–683 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ambler, R. P., and Bartsch, R. G., Nature, 253, 285–288 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Tanaka, M., Haniu, M., Yasunobu, K. T., Rao, K. K., and Hall, D. O., Biochemistry, 14, 5535–5540 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Wada, K., Hase, T., Tokunaga, H., and Matsubara, H., FEBS Lett., 55, 102–104 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Bishop, N. I., A. Rev. Biochem., 40, 197–226 (1971).

    Article  CAS  Google Scholar 

  9. Edelman, M., Swinton, D., Schiff, J. A., Epstein, H. T., and Zeldin, B., Bact. Rev., 31, 315–331 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stanier, R. Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G., Bact. Rev., 35, 171–205 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen, M. B., and Arnon, D. I., Pl. Physiol., Lancaster, 30, 366–372 (1955).

    Article  CAS  Google Scholar 

  12. Cannon, R. E., Shane, M. S., and Bush, V. N., Virology, 45, 149–153 (1971).

    Article  CAS  PubMed  Google Scholar 

  13. Lightbody, J. J., and Krogmann, D. W., Biochim. biophys. Acta, 131, 508–515 (1967).

    Article  CAS  PubMed  Google Scholar 

  14. Biggins, J., Pl. Physiol., Lancaster, 42, 1447–1456 (1967).

    Article  CAS  Google Scholar 

  15. Ornstein, L., Ann. N. Y. Acad. Sci., 121, 321–349 (1964).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Weber, K., and Osborn, M., J. biol. Chem., 244, 4406–4412 (1969).

    CAS  PubMed  Google Scholar 

  17. Siegelman, M. H., Rashed, I., and Böger, P., Biochem. biophys. Res. Commun., 65, 1456–1463 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. Visser, J. W. M., Amesz, J., and Van Gelder, B. F., Biochim. biophys. Acta, 333, 279–287 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa, T., and Vernon, L. P., Biochim. biophys. Acta, 226, 88–97 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Wharton, D. C., and Rader, M., Analyt. Biochem., 33, 226–229 (1970).

    Article  CAS  PubMed  Google Scholar 

  21. Edman, P., and Begg, G., Eur. J. Biochem., 1, 80–91 (1967).

    Article  CAS  PubMed  Google Scholar 

  22. Hermodsen, M. A., Ericsson, L. H., Titani, K., Neurath, H., and Walsh, K. A., Biochemistry, 11, 4493–4502 (1972).

    Article  Google Scholar 

  23. Van Orden, H. O., and Carpenter, F. M., Biochem. biophys. Res. Commun., 14, 399–403 (1964).

    Article  CAS  PubMed  Google Scholar 

  24. Niall, H. D., Meth. Enzymol., 27, 942–1010 (1973).

    Article  CAS  Google Scholar 

  25. Ambler, R. P., Biochem. J., 89, 349–378 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laycock, M. V., Biochem. J., 149, 271–279 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolk, C. P., Bact. Rev., 37, 32–101 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kelly, J., and Ambler, R. P., Biochem. J., 143, 681–690 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramshaw, J. A. M., Scawen, M. D., Bailey, C. J., and Boulter, D., Biochem. J., 139, 583–592 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Milne, P. R., Wells, J. R. E., and Ambler, R. P., Biochem. J., 143, 691–701 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hutson, K. G., and Rogers, L. J., Biochem. Soc. Trans., 3, 377–379 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Hase, T., Wada, K., and Matsubara, H., J. Biochem. (Tokyo), 78, 605–610 (1975).

    Article  CAS  Google Scholar 

  33. Schopf, J. W., Origins of Life, 5, 119–135 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Dayhoff, M. O., Atlas of Protein Sequence and Structure, 4 (National Biomedical Research Foundation, Washington, DC, 1972).

    Google Scholar 

  35. Peacock, D., and Boulter, D., J. molec. Biol., 95, 513–527 (1975).

    Article  CAS  PubMed  Google Scholar 

  36. King, J. L., and Jukes, T. H., Science, 164, 788–798 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Ambler, R. P., Syst. Zool., 22, 554–565 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

AITKEN, A. Protein evolution in cyanobacteria. Nature 263, 793–796 (1976). https://doi.org/10.1038/263793a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263793a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing