Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The lipid bilayer as a ‘solvent’ for small hydrophobic molecules

Abstract

THE cell membrane is viewed at present as a two-dimensional solution in which the lipid bilayer acts as a viscous ‘solvent’ for oriented integral proteins1. Accepting this model as a working hypothesis, questions arise as to the nature of the hydrophobic interior of the bilayer and what rules proteins, lipoproteins, or polypeptides obey in interacting with it. The simplest hypothesis for the interior is that it is equivalent to a bulk alkyl solvent (albeit a very thin one). If this hypothesis is correct, the enthalpy of transfer (ΔH) of a solute molecule (for example, an alkane) from a bulk alkyl solvent to the bilayer interior should be small. That is, the solute-solvent interaction energy should be about the same in the bilayer as in the bulk alkyl. I have examined this hypothesis experimentally by measuring the solubility of n-hexadecane in planar bilayer membranes formed from glycerol-1-monooleate (1-GMO). The acyl chain of 1-GMO is approximately equivalent to 1-heptadecene. The enthalpy of transfer of n-hexadecane from pure liquid into 1-heptadecene can be estimated from solubility parameter theory2 to be only a few calories per mol. Thus, the mixing of n-hexadecane in the bilayer interior should be nearly athermal: I have found, however, that δH is orders of magnitude larger than expected. This result has important implications for understanding the bilayer as a two-dimensional solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Singer, S. J., and Nicolson, G. L., Science, 175, 720–731 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Hildebrand, J. H., Prausnitz, J. M., and Scott, R. L., Regular and Related Solutions, (Van Nostrand Reinhold, New York, 1970).

    Google Scholar 

  3. Mueller, P., Rudin, D. O., Tien, H. T., and Westcott, W. C., Circulation, 26, 1167–1170 (1962).

    Article  CAS  Google Scholar 

  4. White, S. H., Biochim. biophys. Acta, 196, 354–357 (1970); Biophys, J., 10, 1127–1148 (1970).

    Article  CAS  Google Scholar 

  5. White, S. H., Biochim. biophys. Acta, 356, 8–16 (1974); Biophys, J., 15, 95–117 (1975).

    Article  CAS  Google Scholar 

  6. Henn, F. A., and Thompson, T. E., J. molec Biol., 31, 227–235 (1968).

    Article  CAS  Google Scholar 

  7. Andrews, D. M., and Haydon, D. A., J. molec. Biol, 32, 149–150 (1968).

    Article  CAS  Google Scholar 

  8. White, S. H., and Thompson, T. E., Biochim. biophys. Acta 323, 7–22 (1973).

    Article  CAS  Google Scholar 

  9. White, S. H., and Blessum, D. N., Rev. Sci. Iustrum., 46, 1462–1466 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Fettiplace, R., Andrews, D. M., and Haydon, D. A., J. Membr. Biol., 5, 277–296 (1971).

    Article  CAS  Google Scholar 

  11. Pagano, R. E., Ruysschaert, J. M., and Miller, I. R., J. Membr. Biol., 10, 11–30 (1972).

    Article  CAS  Google Scholar 

  12. Gershfeld, N. L., and Pagano, R. E., J. phys. Chem., 76, 1231–1237 (1972).

    Article  CAS  Google Scholar 

  13. Katz, Y., Biophys. J., 16, 52a (1976).

    Google Scholar 

  14. Simon, S. A., Stone, W. L., and Busto-Latorre, P., Biophys. J., 16, 137a (1976).

    Article  Google Scholar 

  15. Dean, R. B., and Hayes, K. E., J. Am. chem. Soc., 74, 5982–5984, (1952).

    Article  CAS  Google Scholar 

  16. White, S. H., Biophys. J., 16, 193a (1976).

    Article  Google Scholar 

  17. Requena, J., and Haydon, D. A., Proc. R. Soc., A 347, 161–177 (1975).

    ADS  CAS  Google Scholar 

  18. Lesslauer, W., and Blasie, J. K., Biophys. J., 12, 175–190 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WHITE, S. The lipid bilayer as a ‘solvent’ for small hydrophobic molecules. Nature 262, 421–422 (1976). https://doi.org/10.1038/262421a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262421a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing