Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of the Moon's orbit and the origin of life

Abstract

PERIODICITIES in fossil corals may be used to determine the number of days in a year1; both daily and seasonal variations are visible in the growth patterns. Scrutton2 used similar data to determine the number of days in a lunar month; monthly and fortnightly periodicities are present because of tides. The available data3–6 through the Palaeozoic are given in Fig. 1a and b. We conclude, from studies of living crustaceans and recent fossils, that the growth patterns are sensitive to the solar day. So, the data represent the number of solar days in a year and in a lunar month; the present values are 365.25 and 29.53 d respectively. Panella3 has also used periodicities in stromatolites to determine the number of solar days in a lunar month during the Precambrian. His results are given in Fig. 1c.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wells, J. W., Nature, 197, 948 (1963).

    Article  ADS  Google Scholar 

  2. Scrutton, C. T., Palaeontology, 7, 552 (1965).

    Google Scholar 

  3. Pannella, G., Astrophys. Space Sci., 16, 212 (1972).

    Article  ADS  Google Scholar 

  4. Wells, J. W., in Palaeogeophysics (edit. by Runcorn, S. K.), 3 (Academic Press, New York, 1970).

    Google Scholar 

  5. Berry, W. B. N., and Barker, R. M., Nature, 217, 938 (1968).

    Article  ADS  Google Scholar 

  6. Scrutton, C. T., in Palaeogeophysics (edit. by Runcorn, S. K.), 11 (Academic Press, New York, 1970).

    Google Scholar 

  7. Runcorn, S. K., Nature, 218, 459 (1968).

    Article  ADS  Google Scholar 

  8. Lamar, D. L., McGann-Lamar, J. V., and Merifield, P. M., in Palaeogeophysics (edit. by Runcorn, S. K.), 41 (Academic Press, New York, 1970).

    Google Scholar 

  9. Scrutton, C. T., and Hipkin, R. G., Earth Sci. Rev., 9, 259 (1973).

    Article  ADS  Google Scholar 

  10. MacDonald, G. J. F., Science, 145, 881 (1964).

    Article  ADS  CAS  Google Scholar 

  11. Newton, R. R., Geophys. J. R. astr. Soc., 14, 505 (1968).

    Article  Google Scholar 

  12. Jeffreys, H., Nature, 246, 346 (1973).

    Article  ADS  Google Scholar 

  13. Gerstenkorn, H., Z. Astrophys., 36, 245 (1955).

    ADS  MathSciNet  Google Scholar 

  14. Naldrett, A. J., Can. Inst. Min. and Metall. Trans., 76, 183 (1973).

    Google Scholar 

  15. Barghoorn, E. S., and Schopf, J. W., Science, 152, 758 (1966).

    Article  ADS  CAS  Google Scholar 

  16. Schopf, J. W., and Barghoorn, E. S., Science, 156, 508 (1967).

    Article  ADS  CAS  Google Scholar 

  17. Engel, A. E. J., Nagy, B., Nagy, L. A., Engel, C. E., Kremp, G. O. W., and Drew, C. M., Science, 161, 1005 (1968).

    Article  ADS  CAS  Google Scholar 

  18. Brooks, J., Muir, M. D., and Shaw, G., Nature, 244, 215 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Hurley, P. M., Pinson, W. H., Nagy, B., and Teska, T. M., Earth planet. Sci. Lett., 14, 360 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Allsopp, H. L., Ulrych, T. J., and Nicolaysen, L. O., Can. J. Earth Sci., 5, 605 (1968).

    Article  ADS  CAS  Google Scholar 

  21. Sinha, A. K., Earth planet. Sci. Lett., 16, 219 (1972).

    Article  ADS  CAS  Google Scholar 

  22. Jahn, B., and Shih, C., EOS, 54, 503 (1973).

    Google Scholar 

  23. Cloud, P. E., Amer. Sci., 62, 54 (1974).

    ADS  CAS  Google Scholar 

  24. Goldich, S. S., Econ. Geol., 68, 1126 (1973).

    Article  CAS  Google Scholar 

  25. Mueller, G., in Molecular Evolution: Prebiologican and Biological (edit. by Rohlfing, D. L., and Oparin, A. I.), 397 (Plenum, New York, 1972).

    Google Scholar 

  26. Schopf, J. W., Oehler, D. Z., Horodyski, R. J., and Kvenvolden, K. A., J. Paleon., 45, 477 (1971).

    Google Scholar 

  27. Bond, G., Wilson, J. F., and Winnal, N. J., Nature, 244, 275 (1973).

    Article  ADS  Google Scholar 

  28. Walter, M. R., Econ. Geol., 67, 965 (1972).

    Article  CAS  Google Scholar 

  29. Walter, M. R., Bauld, J., and Brock, T. D., Science, 178, 402 (1972).

    Article  ADS  CAS  Google Scholar 

  30. Fox, S. W., Nature, 205, 328 (1965).

    Article  ADS  CAS  Google Scholar 

  31. Fox, S. W., in Prebiotic and Biochemical Evolution (edit. by Kimball, A. P., and Oro, J.), 8 (North-Holland, Amsterdam, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TURCOTTE, D., NORDMANN, J. & CISNE, J. Evolution of the Moon's orbit and the origin of life. Nature 251, 124–125 (1974). https://doi.org/10.1038/251124a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/251124a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing