Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pseudorotation mechanism of ATP hydrolysis in muscle contraction

Abstract

AN analysis of the reaction mechanism of ATP hydrolysis may elucidate how ATP provides energy for muscle contraction. Kinetic studies of the mechanism of ATP hydrolysis catalysed by myosin and its proteolytic subfragments1,2, revealed at least two intermediates before the rate limiting step: (1) enzyme-bound ATP (M*ATP) and (2) an intermediate (M*ADP·Pi) that yields ADP and Pi when a quenching reagent such as HClO4 is added. Trentham et al.2 proposed that the rate limiting step is the transition from M*ADP·Pi to the Michaelis product complex M·ADP·Pi. That M*ADP·Pi is distinct from the Michaelis product complex is supported by observations made using techniques which include spin labelling3, difference ultraviolet absorption spectroscopy4, extrinsic probe fluorescence5 and intrinsic myosin fluorescence6. Each method shows that the conformation of myosin during ATP hydrolysis differs from the conformation induced by the binding of ADP and Pi. This conclusion is supported further by the observation that the free energy change for the reversible reaction M*ATP M*ADP·Pi is only −1.3 kcalories per mol (ref. 7). Although comparable in energy with M*ATP, M*ADP·Pi nevertheless seems to be closely related to products because it decays to ADP and Pi when exposed to a quenching reagent. Although this decay to ADP and Pi has been widely interpreted as indicating that ATP is already cleaved in M*ADP·Pi, it could alternatively be interpreted in terms of an uncleaved but labile reaction intermediate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lymn, R. W., and Taylor, E. W., Biochemistry, 9, 2975–2983 (1970).

    Article  CAS  Google Scholar 

  2. Trentham, D. R., Bardsley, R. G., Eccleston, J. F., and Weeds, A. G., Biochem. J., 126, 635–644 (1972).

    Article  CAS  Google Scholar 

  3. Seidel, F. C., and Gergely, J., Biochem. biophys. Res. Commun., 44, 826–830 (1971).

    Article  CAS  Google Scholar 

  4. Morita, F., J. Biol. Chem., 242, 4501–4506 (1967).

    CAS  PubMed  Google Scholar 

  5. Cheung, H. C., Biochim. biophys. Acta, 194, 478–485 (1969).

    Article  CAS  Google Scholar 

  6. Werber, M. M., Szent-Gyoergyi, A. G., and Fasman, G. D., Biochemistry, 11, 2872–2883 (1972).

    Article  CAS  Google Scholar 

  7. Bagshaw, C. R., and Trentham, D. R., Biochem. J., 133, 323–328 (1973).

    Article  CAS  Google Scholar 

  8. Levy, H., and Koshland, D. E., J. biol.Chem., 234, 1102–1107 (1958).

    Google Scholar 

  9. Sartorelli, L., Fromm, H. J., Benson, R. W., and Boyer, P. D., Biochemistry, 5, 2877–2884 (1966).

    Article  CAS  Google Scholar 

  10. Dempsey, M. E., and Boyer, P. D., J. biol Chem., 236, PC6–7 (1961).

    CAS  PubMed  Google Scholar 

  11. Korman, E. F., and McLick, J., Proc. natn. Acad. Sci. USA, 67, 1130–1136 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Korman, E. F., and McLick, J., Bioenergetics, 3, 147–158 (1972).

    Article  CAS  Google Scholar 

  13. Korman, E. F., and McLick, J., Bioorg. Chem., 2, 179–190 (1973).

    Article  CAS  Google Scholar 

  14. Young, J. H., Korman, E. F., and McLick, J., Bioorg. Chem. 3, 1–15 (1974).

    Article  CAS  Google Scholar 

  15. Yount, R. G., and Koshland, D. E., J. biol. Chem., 238, 1708–1713 (1963).

    CAS  PubMed  Google Scholar 

  16. Swanson, J. R., and Yount, R. G., Biochem. Z., 345, 395–409 (1966).

    CAS  Google Scholar 

  17. Mandelkow, E., and Mandelkow, E., FEBS Lett., 33, 161–166 (1973).

    Article  CAS  Google Scholar 

  18. Lymn, R. W., and Taylor, E. W., Biochemistry, 10, 4617–4624 (1971).

    Article  CAS  Google Scholar 

  19. Huxley, H. E., Science, 164, 1356–1367 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Eisenberg, E., Dobkin, L., and Kielley, W. W., Proc. natn. Acad. Sci. USA, 69, 667–671 (1972).

    Article  ADS  CAS  Google Scholar 

  21. Huxley, A. F., and Simmonds, R. M., Nature, 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  22. Julian, F. J., Sollins, K. R., and Sollins, M. R., Cold Spring Harbor Symp. quant. Biol., 37, 685 (1972).

    Article  Google Scholar 

  23. Weltman, J. K., and Dowben, R. M., Proc. natn. Acad. Sci. USA, 70, 3230–3234. (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

YOUNG, J., MCLICK, J. & KORMAN, E. Pseudorotation mechanism of ATP hydrolysis in muscle contraction. Nature 249, 474–476 (1974). https://doi.org/10.1038/249474a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/249474a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing