Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlations between (Na + K)-ATPase, Ca-ATPase and cellular potassium concentration in cattle red cells

Abstract

THE existence in erythrocytes of active, ATP-dependent Na-K exchange on one hand and of active, ATP-dependent outward transport of Ca1–5 on the other raises the question whether two independent or one common system account for these functions. Inhibition of the Na-K system by Ca, although easily demonstrated, does not lend particularly strong support to the hypothesis of a common pathway for Na and Ca in active transport, because full activation of the Ca system6–9 is achieved by lower Ca concentrations than those required to inhibit Na+K-ATPase8 and because Epstein and Whittam10 have pointed out that the effect is due to competition between Ca-ATP and Mg-ATP for the substrate site and that competition between Ca and Na for the transport site is unlikely. The Na-K system is inhibited by cardiac glycosides whereas Ca transport and Ca-activated ATPase are not2,3,11 which seems to exclude a common site, but not necessarily a common protein. If alkali cation and Ca movements were mediated by the same membrane protein independent measurements of Na+K-activated ATPase and Ca-stimulated ATPase activity should positively correlate. K concentration in cattle red cells varies widely between animals12,15, there is agreement as to the ability of these cells to pump Na and K13–17, and indications exist that .different intensity of pumping accounts for the different K (and Na) content of the cells12–14. Cattle cells, therefore, seem suitable objects to study phenomena which might correlate with NA+K-ATPase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schatzmann, H. J., Experientia, 22, 364 (1966).

    Article  CAS  Google Scholar 

  2. Schatzmann, H. J., and Vincenzi, F. F., J. Physiol., Lond., 201, 369 (1969).

    Article  CAS  Google Scholar 

  3. Lee, K. S., and Shin, B. C., J. gen. Physiol., 54, 713 (1969).

    Article  CAS  Google Scholar 

  4. Olson, E. J., and Cazort, R. J., J. gen. Physiol., 53, 311 (1969).

    Article  CAS  Google Scholar 

  5. Romero, P. J., and Whittam, R., J. Physiol., Lond. 214, 481 (1971).

    Article  CAS  Google Scholar 

  6. Schatzmann, H. J., J. Physiol., Lond., 235, 551 (1973).

    Article  CAS  Google Scholar 

  7. Wolf, H. U., Biochem. J., 130, 311 (1972).

    Article  CAS  Google Scholar 

  8. Davis, P. W., and Vincenzi, F. F., Life Sci. 10/II, 401 (1971).

    Article  CAS  Google Scholar 

  9. Schatzmann, H. J., and Rossi, G. L., Biochim. biophys. Acta, 241, 379 (1971).

    Article  CAS  Google Scholar 

  10. Epstein, F. H., and Whittam, R., Biochem. J., 99, 232 (1966).

    Article  CAS  Google Scholar 

  11. Dunham, E. T., and Glynn, I. M., J. Physiol., Lon., 156, 274 (1961).

    Article  CAS  Google Scholar 

  12. Ellory, J. C., and Tucker, E. M., J. agric. Sci., Camb., 74, 595 (1970).

    Article  CAS  Google Scholar 

  13. Christinaz, P., and Schatzmann, H. J., J. Physiol., Lond., 224, 391 (1972).

    Article  CAS  Google Scholar 

  14. Sorenson, A. L., Kirschner, L. B., and Barker, J., J. gen. Physiol., 45, 1031 (1962).

    Article  CAS  Google Scholar 

  15. Keeton, K. S., and Kaneko, J. J., Proc. Soc. exp. Biol. Med., 140, 30 (1972).

    Article  CAS  Google Scholar 

  16. Motais, R., J. Physiol., Lond., 233, 395 (1973).

    Article  CAS  Google Scholar 

  17. Laris, P. C., and Letchworth, P. E., J. cell. comp. Physiol., 61, 235 (1963).

    Article  CAS  Google Scholar 

  18. Harrison, D. G., and Long, C., J. Physiol., Lond., 199, 367 (1968).

    Article  CAS  Google Scholar 

  19. Lichtman, M. A., and Weed, R. I., in Red Cell Shape, 79, edited by Bessis, M., Weed, R. I., and Leblond P. F., (Springer-Verlag, New York and Heidelberg, 1973).

    Google Scholar 

  20. Sachs, L., Statistische Auswertungsmethoden, (Springer-Verlag, New York and Heidelberg, 1972).

    Book  Google Scholar 

  21. Gardos, G., Biochim. biophys. Acta, 30, 653 (1958).

    Article  CAS  Google Scholar 

  22. Lew, V. L., J. Physiol. (Lond.), 206, 35P (1970).

    Article  CAS  Google Scholar 

  23. Hoffman, J. F., Circulation, 26, 1201 (1962).

    Article  CAS  Google Scholar 

  24. Porzig, H., Union Swiss Soc. exp. biol., 5th ann. meeting, Experientia, 29, 747 (1973).

    Google Scholar 

  25. Blum, R. M., and Hoffman, J. F., J. membrane Biol., 6, 315 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SCHATZMANN, H. Correlations between (Na + K)-ATPase, Ca-ATPase and cellular potassium concentration in cattle red cells. Nature 248, 58–60 (1974). https://doi.org/10.1038/248058a0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/248058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing