Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural homology of the glutamine amidotransferase subunits of the anthranilate synthetases of Eschierichia coil, Salmonella typhimurium and Serratia marcescens

Abstract

ANTHRANILATE synthetase (AS), the enzyme catalysing the initial reaction unique to tryptophan biosynthesis, chorismate + glutamine → anthranilate, has been characterised from a number of bacterial genera1. In E. coli2–4, Salmonella typhimurium5–10, and Aerobacter aerogenes11, this enzyme and anthranilate-5-phosphoribosylpyrophosphate phosphoribosyl-transferase (PRT) exist in a complex that also performs the second reaction of tryptophan biosynthesis, the conversion of anthranilate + 5-phosphoribosyl-1-pyrophosphate → phosphoribosyl anthranilate. The AS-PRT complex of these bacterial genera is composed of two non-identical polypeptide components, each with a molecular weight of approximately 60-65,000. Component I of the complex can convert chorismate + NH3 → anthranilate but cannot use glutamine as amino donor. Component II of the complex is bifunctional; it provides the glutamine amidotransferase (GAT) and the PRT activities. In Serratia narcescens12–14, Bacillus subtilis15–16, Acinetobacter calcoaceticus17–18, and various species of Pseudomonas19–20, AS is not associated with PRT, which is a distinct protein. The AS of these bacteria consists of two non-identical subunits of different sizes. The large subunit, approximately 60–70,000 in molecular weight, functions as does component I of E. coli, S. typhimurium and A. aerogenes while the small subunit contributes the GAT activity. The molecular weights of the GAT subunit of S. marcescens12,14, Pseudomonas putida19,20, B. subtilis15, and A. calcoaceticus18 have been estimated to be 21,000, 18,000, 16,000 and 14,000 respectively. The PRT of S. marcescens has a molecular weight of 45,000, which is smaller than that of component II of E. coli and S. typhimurium by an amount equivalent to the molecular weight of a GAT subunit14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zalkin, H., in Advances in Enzymology, 38, (edit. by Meister, A.) (Wiley, New York, 1973).

    Google Scholar 

  2. Ito, J., and Yanofsky, C., J. biol. Chem., 241, 4112 (1966).

    Article  CAS  Google Scholar 

  3. Ito, J., Cox, E. C., and Yanofsky, C., J. Bact., 97, 725 (1969).

    Article  CAS  Google Scholar 

  4. Ito, J., and Yanofsky, C., J. Bact., 97, 734 (1969).

    Article  CAS  Google Scholar 

  5. Bauerle, R. H., and Margolin, P., Cold Spring Harbor Symp. Quant. Biol., 31, 203 (1966).

    Article  CAS  Google Scholar 

  6. Henderson, E. J., Nagano, H., Zalkin, H., and Hwang, L. H., J. biol. Chem., 245, 1416 (1970).

    Article  CAS  Google Scholar 

  7. Henderson, E. J., Zalkin, H., and Hwang, L. H., J. biol. Chem., 245, 1424 (1970).

    Article  CAS  Google Scholar 

  8. Nagano, H., and Zalkin, H., J. biol. Chem., 245, 3097 (1970).

    Article  CAS  Google Scholar 

  9. Hwang, L. H., and Zalkin, H., J. biol. Chem., 246, 2338 (1971).

    Article  CAS  Google Scholar 

  10. Henderson, E. J., and Zalkin, H., J. biol. Chem., 246, 6891 (1971).

    Article  CAS  Google Scholar 

  11. Egan, A. F., and Gibson, F., Biochim. biophys. Acta, 130, 276 (1966).

    Article  CAS  Google Scholar 

  12. Zalkin, H., and Hwang, L. H., J. biol. Chem., 246, 6899 (1971).

    Article  CAS  Google Scholar 

  13. Robb, F., Hutchinson, M. A., and Belser, W. L., J. biol. Chem., 246, 6908 (1971).

    Article  CAS  Google Scholar 

  14. Robb, F., and Belser, W. L., Biochim. biophys. Acta, 285, 243 (1972).

    Article  CAS  Google Scholar 

  15. Kane, J. F., and Jensen, R. A., Biochem. biophys. Res. Commun., 41, 328 (1970).

    Article  CAS  Google Scholar 

  16. Kane, J. F., Holmes, W. M., and Jensen, R. A., J. biol. Chem., 247, 1587 (1972).

    Article  CAS  Google Scholar 

  17. Sawula, R. V., and Crawford, I. P., J. Bact., 112, 797 (1972).

    Article  CAS  Google Scholar 

  18. Sawula, R. V., and Crawford, I. P., J. biol. Chem., 248, 3573 (1973).

    Article  CAS  Google Scholar 

  19. Queener, S. F., and Gunsalus, I. C., Proc. natn. Acad. Sci. U.S.A., 67, 1225 (1970).

    Article  ADS  CAS  Google Scholar 

  20. Queener, S. W., Queener, S. F., Meeks, J. R., and Gunsalus, I. C., J. biol. Chem., 248, 151 (1973).

    Article  CAS  Google Scholar 

  21. Grieshaber, M., and Bauerle, R., Nature new biol., 236, 232 (1972).

    Article  Google Scholar 

  22. Yanofsky, C., Horn, V., Bonner, M., and Stasiowski, S., Genetics, 69, 409 (1971).

    Article  CAS  Google Scholar 

  23. Jackson, E., and Yanofsky, C., J. Bact. (in the press).

  24. Edman, P., and Begg, G., Eur. J. Biochem., 1, 80 (1967).

    Article  CAS  Google Scholar 

  25. Pisano, J. J., and Bronzert, T. J., J. biol. Chem., 224, 5597 (1969).

    Article  Google Scholar 

  26. Li, S.-L., and Yanofsky, C., J. biol. Chem., 247, 1031 (1972).

    Article  CAS  Google Scholar 

  27. Huang, M., and Gibson, F., J. Bact., 102, 767 (1970).

    Article  CAS  Google Scholar 

  28. Gibson, F., Pittard, J., and Reich, E., Biochim. biophys. Acta, 136, 573 (1967).

    Article  CAS  Google Scholar 

  29. Kuhn, J. C., Pabst, M. J., and Somerville, R. L., J. Bact., 112, 93 (1972).

    Article  CAS  Google Scholar 

  30. Yourno, J., Kohno, T., and Roth, J. R., Nature, 228, 820 (1970).

    Article  ADS  CAS  Google Scholar 

  31. Creighton, T. E., and Yanofsky, C., J. biol. Chem., 241, 4625 (1966).

    Article  Google Scholar 

  32. Creighton, T. E., Biochem. J., 120, 699 (1970).

    Article  CAS  Google Scholar 

  33. McGrade, J. F., III, and Creighton, T. E., Eur. J. Biochem., 16, 199 (1970).

    Article  Google Scholar 

  34. Hutchinson, M. A., and Belser, W. L., J. Bact., 98, 109 (1969).

    Article  CAS  Google Scholar 

  35. Potts, J. M., and Drapeau, G. R., J. Bact., 111, 334 (1972).

    Article  CAS  Google Scholar 

  36. Hoch, S. O., Anagnostopoulos, C., and Crawford, I. P., Biochem. biophys. Res. Commun., 35, 838 (1970).

    Article  Google Scholar 

  37. Enatsu, T., and Crawford, I. P., J. Bact., 95, 107 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LI, SL., HANLON, J. & YANOFSKY, C. Structural homology of the glutamine amidotransferase subunits of the anthranilate synthetases of Eschierichia coil, Salmonella typhimurium and Serratia marcescens. Nature 248, 48–50 (1974). https://doi.org/10.1038/248048a0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/248048a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing