Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface versus Intracellular Polarization of Cortical Cells

Abstract

ALTHOUGH it is almost 100 yr since the original report of Fritsch and Hitzig1, many of the effects of direct current stimulation (polarization) of the surface of motor cortex on cellular activity remain unclear. Electrophysiological research has shown that surface anodal polarization increases while surface cathodal polarization decreases the rate of discharge of cortical cells2–5. These results have been interpreted in terms of a model developed to explain the effects of direct current applied extracellularly on isolated nerve terminals6,7. In its simplest form, increases and decreases in discharge rate have been related to polarization induced displacements in membrane potential of cells subjected to a longitudinal potential gradient8–12. Presumably some fraction of diffuse extracellular applied current enters areas of superficial membrane close to the focal polarizing electrode. The chief effect of this current, however, is exerted as it leaves from distant parts of the excitable membrane. Accordingly, in the cortex, a surface anode provides inward current as it enters superficial dendritic regions of vertically oriented cells which subtend several cortical layers. At the same time the anode generates an outward depolarizing current as it passes out through deep-lying areas of excitable membrane in the soma or axon–hillock region of the cell. The sequence of events is presumably reversed when a surface cathode is used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fritsch, G., and Hitzig, E., Arch. Anat. Physiol. wiss. Med. Leitzig, 37, 300 (1870).

    Google Scholar 

  2. Asanuma, H., and Ishikawa, T., Kobe J. Med. Sci., 5, 75 (1960).

    Google Scholar 

  3. Burns, B. D., J. Physiol., 125, 427 (1954).

    Article  CAS  Google Scholar 

  4. Calvet, J., and Scherrer, J., C.R. Acad. Sci., 252, 2297 (1961).

    CAS  Google Scholar 

  5. Mollica, A., and Rossi, G. F., Arch. Fisiol., 54, 219 (1954).

    CAS  PubMed  Google Scholar 

  6. Maruhashi, J., Mizuguchi, K., and Tasaki, I., J. Physiol., 117, 129 (1952).

    Article  CAS  Google Scholar 

  7. Murray, R. W., J. Physiol., 134, 408 (1956).

    Article  CAS  Google Scholar 

  8. Crutzfeldt, O. D., Fromm, G. H., and Kapp, H., Exp. Neurol., 5, 436 (1962).

    Article  Google Scholar 

  9. Gorman, A. L. F., J. Neurophysiol., 29, 547 (1966).

    Article  CAS  Google Scholar 

  10. Hern, J. E. C., Langren, S., Phillips, C. G., and Porter, R., J. Physiol., 73, 161 (1962).

    Google Scholar 

  11. Landau, W. M., Bishop, G. H., and Clare, M. H., J. Neurophysiol., 28, 1206 (1965).

    Article  CAS  Google Scholar 

  12. Purpura, D. P., and McMurtry, J. G., J. Neurophysiol., 28, 166 (1965).

    Article  CAS  Google Scholar 

  13. Colonnier, M. L., Brain and Conscious Experience, 1 (Springer-Verlag, New York, 1966).

    Google Scholar 

  14. Eccles, J. C., Kostyuk, P. G., Schmidt, R. F., J. Physiol., 162, 138 (1962).

    Article  CAS  Google Scholar 

  15. Landau, W. M., Bishop, G. H., and Clare, M. H., J. Neurophysiol., 27, 788 (1964).

    Article  CAS  Google Scholar 

  16. Gorman, A. L. F., Exp. Neurol., 17, 344 (1967).

    Article  CAS  Google Scholar 

  17. Araki, T., and Otani, T., J. Neurophysiol., 18, 472 (1955).

    Article  CAS  Google Scholar 

  18. Krnjevič, K., Ranvič, M., and Stranghan, D. W., J. Physiol., 184, 49 (1966).

    Article  Google Scholar 

  19. Phillips, C. G., Quart. J. Exp. Physiol., 41, 70 (1956).

    Article  CAS  Google Scholar 

  20. Sugaya, E., Goldring, S., and O'Leary, J. L., Electroence ph. Clin. Neurophysiol., 17, 661 (1964).

    Article  CAS  Google Scholar 

  21. Creutzfeldt, O. D., Watanabe, S., and Lux, H. D., Electroenceph. Clin. Neurophysiol., 2D, 1 (1966).

    Article  Google Scholar 

  22. Li, C. L., and Chou, S. N., J. Cell. Comp. Physiol., 60, 1 (1962).

    Article  CAS  Google Scholar 

  23. Creutzfeldt, O. D., Lux, H. D., and Watanabe, S., The Thalamus, 209 (Columbia University Press, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GORMAN, A. Surface versus Intracellular Polarization of Cortical Cells. Nature 216, 288–289 (1967). https://doi.org/10.1038/216288a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/216288a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing