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of such a fibre was some distance from the electrode 
tip toward the periphery of the retina. The typical 
s~ow changes of ganglion cells were absent, the poten­
tials rose sharply and were all or none. Further, 
there wa.s no sign of synaptic noise which was always 
present in ganglion cells. 

'l'he present observatioru; may be compared with 
those in a variety of nerve cells. Thus, Eyzaguirre 
and Kuffier•, recording from the cell body of the 
stre_tch recepto~ o~ ?rayfish, showed corresponding 
excitatory and mh1bitory changes which determined 
th_e discharge frequency. Further, Hartline, Mac­
Nrchol _and v\'."agner• a_nd Fuortes•, leading from the 
eccentric cell m the Limulus eye, described a similar 
graded depolarization during illumination which 
was direct~y related to ~he discharge frequency. 
Correspondmg slow potentials, both with excitation 
and inhibit~on, have been reported by Kolmodin and 
Skoglund• m the motoneurons and interneurons of 
the_ ~at's spinal cor~ .. The cortical cells studied by 
Phillips' also had similar slow potentials. 

The retinal ganglion cells are the final points of 
convergence from the neuronal network of the recep­
tive 6;elds! which can extend over an area up to several 
mm. m diameter. The cells can integrate the excita­
tory and inhibitory synaptic influences in terms of 
slow changes in their membrane potential. Pre­
sumably, these in turn control the discharge frequen­
cies of the optic nerve fibres. 

ToRSTEN N. WIESEL 
Wilmer Institute, 

Johns Hopkins Medical School, 
Baltimore, 5. 

Nov. 11. 

' Ruffler, S. W., J. Neurophysiol., 16, 37 (1953). 
'Brown, K. T., and Wiesel, T., Fed. Proc., 17, No. 1 (March 1958). 
'Eyzaguirre, C., and Ruffler, S. W., J. Gen. Physiol., 39, 87 (1955). 
'HartliJ'.!e, JI. K., Wagner, H. G., and )IacNichol, jun., E. F. Cold 
, . Spring Harbor Symp. Quant. Biol., 17, 125 (1932). ' 

Fuortes, M. G. F., E.E.G. Olin. Neurophysiol. Supp. 10 71 (1958) 
'Kolmodin, G. l\L, and Skoglund C. R. Acta' Phys Scdr•d 44 11· 

(1958). ' ' . ' ., ' 
1 Phillips, C. G., Quart. J. Exp. Physiol., 41, 58 (1956). 

Bacterial and Testicular Hyaluronidase 
IN papers from this laboratory, the actions on 

dermal connective tissue1 , 2 and on ocular structures•,• 
of different kinds of hyaluronidase have been studied. 
In these experiments, 'Hyason', manufactured by 
Organon, Oss, Holland, was used as a source ~f 
staphylococcal hyaluronidase. This is also prepara­
tion D of Chauncey et al.5. 

We have recently been infornied that batches of 
'Hy~on' ~eleased after January 29, 1958, contain 
testicular mstead of bacterial hyaluronidase and we 
wri~e thi~ . communication in order to prevent con­
fusion arismg from the change in composition. The 
manufacturer keeps a stock of the old preparation 
and samples are available for research purposes. ' 
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Excitation of the Squid Axon Membrane 
in lsosmotic Potassium Chloride 

THE interesting recent findings in the frog node of 
Ranvier of an 'action potential' in isosmotic potassium 
chloride by Miieller1 , and of two stable states in 
20-40_ mM potassium chloride by Starnpfli 2, raise the 
quest10n as to whether or not similar phenomena are 
to be found in the squid axon membrane. 
. I have made a preliminary study of the approx­
nnate steady-stage voltage-current relationship for 
the squid (Loligo pealii) giant axon membrane in 
0·5 M potassium chloride. When the potential was 
controlled ('E-LOC') and varied, a continuous varia­
tio1:1 of the c?rrent is found, including a negative 
r~sistan~e regi~m. The characteristic shape seen in 
Fig. 1 is typical, although there are some minor 
vari3:tions in t~e E_-I curves depending upon the 
previous potential history and the rate and direction 
of sweeping. When the current was controlled 
('1-LOC') and varied the voltage showed the hysteresis 
loop to be expected about the unstable negative 
re~istance region. This is in complete agreement 
with Segal's3 recent finding of two stable potentials 
for the squid axon membrane in high potassium 
under current control. 

Franck~ ~s c~mpiled exan:ples of dynode type 
ciia:racte_ristrcs _wit? a negative resistance region 
which give excitation phenomena. The squid axon 
membrane in sea water with normal sodium con­
centration exhibits such a characteristic• and gives 
a nornial action potential. Thus, it would also be 
expected that the squid axon in O ·5 M potassium 
chloride with a similar but displaced characteristic 
should exhibit excitation under the proper conditions. 
If th? _membrane is subj~cted to a constant hyper­
polarizmg current, an excitation' threshold for 
superimposed depolarizing current pulses should be 
found when the net current is less than about 
0·15 m.amp./cm.•. Fig. 2 demonstrates the threshold 
and also shows a recovery so that the process may 
well be called an 'action potential'. 

At present, the description of the processes in­
volve_d in the 'action potential' in O ·5 M potassium 
chloride seems to be as follows : If the squid axon 

Em(mV.) 

-200 -150 -100 -50 0 
__ __,_ __ -1.. __ .J.... __ 1._ _ _JLo 

I 
I 

I 
I 

I 

I 

/.,.-\ ____ _ 
I 

/! _________ .,.,. 

0·5 

Fig. 1._ Voltage-~urrent characte:ristics of the squid axon mem­
brane m O ·5 M potassium chloride. The continuous line was 
obtained with potential control; the dashed sections with 

current control. Arrow heads indicate abrupt changes 
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