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Akin to what has been reported for cocaine, systemic administration of the dopamine D1 receptor antagonist, SCH 23390 ((R)-(þ )-7-

chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride), blocks the expression but not the induction

of 3,4-methylenedioxymethamphetamine (MDMA)-induced behavioral sensitization. Since the medial prefrontal cortex (mPFC) appears

to regulate the expression of sensitization to cocaine, this study examined whether microinjection of SCH 23390 into the mPFC would

alter the expression of MDMA sensitization. Saline or MDMA was administered for 5 consecutive days. After 12 days of withdrawal, rats

received a bilateral intra-mPFC microinjection of SCH 23390 or saline followed by an intraperitoneal (i.p.) challenge dose of MDMA.

While SCH 23390 enhanced locomotion in MDMA-naı̈ve rats, it completely suppressed the expression of sensitization in MDMA-

pretreated animals. Since, SCH 23390 has a fairly good affinity for 5-HT2C receptors, we went further to study the role of mPFC D1 and

5-HT2C receptors in this, apparently, paradoxical effect shown by SCH 23390. Thus, the microinjection of both SKF 81297 (R-(þ )-6-

chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide) and MK 212 (6-chloro-2-(1-piperazinyl)pyrazine

hydrochloride), a D1 and 5-HT2C receptor agonist, respectively, blocked MDMA sensitization. By contrast, the 5-HT2C receptor

antagonist, RS 102221 (8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulfonamido)phenyl-5-oxopentyl]-1,3,8-triazaspiro[4,5]decane-

2,4-dione hydrochloride), had no effect in MDMA-naı̈ve or MDMA-sensitized animals, but reversed the effects of SCH 23390 in MDMA-

pretreated rats. These results demonstrate that suppression of MDMA-induced sensitization by SCH 23390 is mediated by 5-HT2C
receptor stimulation in the mPFC and not by the blockade of mPFC D1 receptors. Furthermore, these data indicate that stimulation of

5-HT2C receptors by SCH 23390 is not a minor issue and should be considered when interpreting future data.
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INTRODUCTION

Intermittent administration of psychostimulants in labora-
tory animals induces an enduring and progressive increase
in the behavioral effects of subsequent drug injections that
persists after long periods of withdrawal (Pierce and
Kalivas, 1997; Wolf, 1998; Vanderschuren and Kalivas,
2000). This phenomenon, termed behavioral sensitization,
has been considered for many years a useful animal model

for the development of psychosis (Kalivas and Stewart,
1991; Pierce and Kalivas, 1997). However, recent studies
have also emphasized that the neuronal plasticity under-
lying sensitization results in the enhancement of the
incentive motivational effects of psychostimulants, which
contributes to drug craving (Robinson and Berridge, 1993;
Di Chiara, 1995; Robinson and Berridge, 2000).

3,4-Methylenedioxymethamphetamine (MDMA, ‘ecstasy’)
is an amphetamine derivative that has become a very
popular drug despite its potential neurotoxic effects and
psychiatric complications reported in recreational MDMA
users (Green et al, 2003). MDMA has the ability of lowering
the threshold for rewarding intracranial self-stimulation
(Hubner et al, 1988), produces conditioned place preference
(Bilsky et al, 1998), and it is self-administered by rats and
primates (Beardsley et al, 1986; Schenk et al, 2003). MDMA
not only shares these rewarding properties with other
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psychostimulants such as amphetamine and cocaine but
also elicits long-term behavioral and neurochemical sensi-
tization in rats (Spanos and Yamamoto, 1989; Kalivas et al,
1998; McCreary et al, 1999).

Evidence has accumulated suggesting a crucial role for
mesocorticolimbic dopaminergic system that projects from
the ventral tegmental area (VTA) to the nucleus accumbens
(NAc) and medial prefrontal cortex (mPFC), in behavioral
sensitization to psychostimulants. Neuroadaptations in the
VTA play an important role in the development of such
phenomenon, while the NAc and mPFC have a key role in
the expression of behavioral sensitization (Pierce and
Kalivas, 1997; White and Kalivas, 1998; Wolf, 1998;
Vanderschuren and Kalivas, 2000). Furthermore, many
researchers have postulated that the dopamine D1 receptor
is important for psychostimulant-induced behavioral sensi-
tization (Stewart and Vezina, 1989; Kalivas and Stewart,
1991; Henry and White, 1991; Bjijou et al, 1996; Vezina,
1996). However, the role of D1 receptors appears to
vary depending on the psychostimulant and the process
being studied, that is, development vs expression. More
specifically, D1 receptor antagonist, SCH 23390 ((R)-(þ )-7-
chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-
3-benzazepine hydrochloride), blocks both the development
and expression of amphetamine- and methamphetamine-
induced behavioral sensitization (Vezina and Stewart, 1989;
Hamamura et al, 1991; Vezina, 1996; Karper et al, 2002). In
contrast, D1 receptor antagonism blocks the expression but
not the development of cocaine sensitization (Mattingly
et al, 1994; White et al, 1998).

We have recently shown that SCH 23390, akin to cocaine
sensitization, blocks the expression but not the induction of
MDMA sensitization (Ramos et al, 2004). Owing to this
similarity and because the mPFC regulates the expression of
cocaine sensitization (Pierce et al, 1998; Prasad et al, 1999;
Sorg et al, 2001), in the present work we tested whether D1
receptors located in the mPFC could contribute to the
results found in our previous study after systemic SCH
23390 (Ramos et al, 2004). Our results show that SCH 23390
administered into the mPFC increases the locomotor
activity induced by and acute injection of MDMA (5 mg/
kg intraperitoneally (i.p.)), but blocks the sensitized
response to a challenge dose of MDMA. SCH 23390 has
been extensively used as a dopamine D1 receptor antagonist
(Bourne, 2001); however, it also binds with high affinity to
5-HT2C receptors (Briggs et al, 1991; Millan et al, 2001). For
this reason, we went further to evaluate whether 5-HT2C

receptor stimulation by SCH 23390 could account for the

blockade of the expression of MDMA-induced behavioral
sensitization.

MATERIALS AND METHODS

Drugs

The sources of the drugs used were as follows: racemic
(þ /�)-MDMA-HCl was a gift from the ‘Servicio de
Restricción de Estupefacientes’ (Madrid, Spain). The dose
of (þ /�)-MDMA is reported as concentration of the salt
and was prepared by dissolving in physiological saline. MK
212 (6-chloro-2-(1-piperazinyl)pyrazine hydrochloride),
RS 102221 (8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphe-
nylsulfonamido)phenyl-5-oxopentyl]-1,3,8-triazaspiro[4,5]-
decane-2,4-dione hydrochloride), and SCH 23390 were
purchased from Tocris (Biogen Cientı́fica SL, Madrid, Spain).
SKF 81297 (R-(þ )-6-Chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-
tetrahydro-1H-3-benzazepine hydrobromide) was obtained
from Sigma-Aldrich (Madrid, Spain). All solutions injected
centrally were adjusted to pH 7.2, except the solution of RS
102221, which was adjusted to pH 6–7; control vehicle at pH
6–7 did not alter MDMA-stimulated locomotor activity when
compared to other saline-treated groups.

Animals

Experiments were carried out in male Wistar rats (Harlan,
Barcelona), weighing 260–290 g at the beginning of drug
treatment. Animals were housed four per cage in constant
conditions of humidity and temperature (22711C) with a
12-h/12-h light–dark cycle (lights on at 0700). Food and
water were available ad libitum. Animals were handled on
the 2 days preceding the beginning of drug treatment and
on 2 days preceding drug challenges. The treatment
schedule for all experimental groups is shown in Table 1.
All the procedures followed in the present work were in
compliance with the European Community Council Direc-
tive of 24 November 1986 (86/609/EEC) and were approved
by the Ethical Committee of the University of Navarra.

Locomotor Sensitization Procedure

Horizontal locomotor activity was measured in an open
field, which consisted of nine square arenas (43� 51�
45 cm3) made of black wood using a video tracking system
(Ethovision 3.0, Noldus Information Technology BV,
Wageningen, The Netherlands), in a softly illuminated

Table 1 Behavioral Sensitization Protocol and Treatment Regimens

Groups
(induction/day 18) n Day1

Day 2
(morning/evening)

Days 3–6
(morning and evening) Day 11 Day 17

Day 18
(intra-mPFC/i.p.)

Saline/saline 7–9 Saline Saline/saline Saline Surgery Saline Saline/MDMA-5

MDMA/saline 8–11 Saline MDMA-5/MDMA-10 MDMA-15 Surgery Saline Saline/MDMA-5

Saline/drug 7–12 Saline Saline/saline Saline Surgery Saline Drug/MDMA-5

MDMA/drug 8–9 Saline MDMA-5/MDMA-10 MDMA-15 Surgery Saline Drug/MDMA-5

Rats received morning injections between 0900 and 1300, while evening injections were given between 1900 and 2200. The drugs used on day 18 were as follows:
D1 receptor antagonist, SCH 23390 (0.1, 0.025, or 0.01mg/side); D1 receptor agonist, SKF 81297 (0.1 mg/side); 5-HT2C receptor agonist, MK 212 (0.005mg/side); and
5-HT2C receptor antagonist, RS 102221 (0.15mg/side).
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experimental room. The tracking system was set to
determine the position of the animal 5 times/s. All morning
experiments were conducted between 0900 and 1300.
Evening injections were given between 1900 and 2200.
Distance traveled by rats was only measured in the morning
sessions of days 2 and 18 (see below).

During the whole course of the experiments, we used the
MDMA administration protocol previously described by
Ramos et al (2004). All rats were placed into the arenas 24 h
prior to beginning repeated MDMA (15 mg/kg i.p.) or saline
administrations. On this first day, rats were injected with
saline (1.0 ml/kg i.p.) and were placed into the testing
arenas for a 120 min period to let animals adapt to the new
environment. The next day (day 2), the subjects were
divided into MDMA and saline treatment groups. Subjects
were administered with either saline or MDMA (5 mg/kg
i.p.) and were placed into the arenas. Measurement of
locomotor activity began after the first 15 min. Data analysis
did not begin immediately after drug administration to
avoid confounds due to the injection procedure. After the
habituation period, motor activity was monitored for
105 min. In the evening, rats were injected with saline or
MDMA (10 mg/kg i.p.) and were placed into the arenas for
60 min. Over the next 4 days (days 3–6), rats received two
injections of either saline or MDMA (15 mg/kg i.p.). The
first injection was given in the morning (between 0900 and
1300), while the second one was given between 1900 and
2200. Thereafter, rats were put into the arenas for 60 min.
On day 11, rats went under surgery for cannulae implanta-
tion into the mPFC (see below). At 11 days after the last
dose of MDMA or saline (day 17), rats were injected with
saline and were placed into the testing arenas for a 120 min.
The next day (day 18), all the rats received an intra-mPFC
infusion of either saline or the drugs under study (SCH
23390, SKF 81297, MK 212, or RS 102221) followed by a
challenge dose of MDMA (5 mg/kg i.p.). The animals were
placed into the testing arenas for a 120 min period, where
locomotor activity was quantified after the first 15 min
habituation period. In all cases, animals were challenged
only once.

Surgical Procedures and Intracranial Injections

At 1 week before the challenge dose of MDMA, rats were
anesthetized with a combination of ketamine (70 mg/kg i.p.)
and xylazine (7 mg/kg i.p.) and placed in a Kopf stereotaxic
frame, with the incisor bar set at 3.3 mm below the
interaural line. The skull was exposed and two holes were
drilled to allow implantation of two single 26-G guide
cannulae (C315G Plastics1, Roanoke, VA, USA) into the
mPFC according to the Atlas of Paxinos and Watson (1997)
(all coordinates given relative to bregma): medial PFC,
þ 3.2 mm anteroposterior (AP), 70.7 mm mediolateral
(ML), and �2.2 mm dorsoventral (DV). Guide cannulae
were lowered into place and attached to the skull via two
small stainless-steel screws and dental acrylic. Obturators
(C315DC, Plastics1) cut to extend 0.5 mm beyond the tip of
each cannula were inserted to prevent obstruction by
debris. After surgery, the animals were housed individually
with free access to food and water. To minimize infection,
all animals were injected with the antibiotic enrofloxacin
(0.5 mg/kg i.p.; Baytrilt) once a day for 5 days.

On the day of the experiment (day 18), saline or the drug
under study were microinjected into the mPFC using a
stainless-steel 33-G internal cannula (C315I, Plastics1),
connected to PE-20 tubing leading to a 10 ml Hamilton
syringe. The internal cannulae extended 1 mm below the
guide cannulae bilaterally, and a volume of 0.5 ml/side was
delivered over a period of 1 min. The internal cannulae were
allowed to remain in place for 2 additional minutes
following the injection. After 15 min, a challenge dose of
MDMA (5 mg/kg i.p.) was administered to the rats and the
animals were placed into the arenas for 15 min before
measurements of locomotor activity. Coordinates for local
microinjections were chosen based on previous findings
showing that only the prelimbic subarea, and not the
infralimbic or anterior cingulate subareas of the mPFC, is
involved in the expression of cocaine-induced sensitization
(Pierce et al, 1998; Tzschentke and Schmidt, 2000).

Verification of Cannulae Placement

At the completion of experiments, animals were killed by
decapitation, and the brains were rapidly removed and were
frozen in powder dry ice. Coronal sections (25 mm) were cut
at the level of the PFC using a cryostat. The sections were
mounted on gelatin-coated slides, stained with thionine,
and placed under coverslips to verify probe placements
under a light microscope by an individual unaware of the
rat’s behavioral response.

Statistical Analysis

Horizontal locomotor activity expressed as traveled dis-
tance (cm) was calculated in 15-min blocks. Total
horizontal activity data (a panels in Figures 1, 3–6) were
analyzed with two-way ANOVA with repeated measures
over days. Time-course analyses of all behavioral data (b
panels in Figures 1, 3–6) were performed with a two-way
ANOVA with repeated measures over time. Data from
different treatment groups within 1 day were analyzed with
one-way ANOVA followed by Tukey’s post hoc test and data
from each group within different days were analyzed with
Student’s t-test paired data.

RESULTS

Local Microinjection of SCH 23390 into the mPFC
Prevents the Expression of MDMA Sensitization

As expected, the stimulant effect of a challenge dose of
MDMA (5 mg/kg i.p.) on day 18 was significantly enhanced
in the MDMA-pretreated animals compared with saline-
pretreated rats and with the distance traveled by these same
rats on day 2 (t (8)¼�5.848, Po0.001). To examine
whether blockade of mPFC D1 receptor stimulation would
prevent the expression of MDMA-induced sensitization,
SCH 23390 (0.1, 0.025, or 0.01 mg/0.5 ml) was injected
bilaterally into the mPFC 15 min before the challenge dose
of MDMA on day 18. As it can be seen in Figure 1 (top
panel) and Figure 2, all three doses of SCH 23390 increased
locomotion in MDMA-naı̈ve rats. By contrast, although the
lowest dose of SCH 23390 tested (0.01 mg) caused no
remarkable effect, the infusion of the middle dose of SCH
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23390 (0.025mg) caused a nonsignificant trend towards the
prevention of the sensitized response in MDMA-pretreated
animals. Such effect reached significance in the group of
rats treated with the highest dose of SCH 23390 (0.1 mg)
(Figure 1). In this last case, the two-way ANOVA for
repeated measures revealed a significant interaction (treat-
ment� time F (18, 174)¼ 7.469, Po0.001). Thus, every
single 15 min time block was analyzed using a one-way
ANOVA followed by Tukey’s test. Statistical differences

between treatments at each time block are also shown in
panel b of Figure 1.

Microinjection of the Dopamine D1 Receptor Agonist
SKF 81297, or the 5-HT2C Receptor Agonist MK 212 into
the mPFC Prevent MDMA-Induced Sensitization

In the following set of experiments, we administered the D1
receptor agonist, SKF 81297 (0.1 mg/0.5 ml/side), into the
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Figure 1 Effect of intra-mPFC infusion of SCH 23390 on the expression of MDMA-induced sensitization. The bar graph in panel a illustrates the
mean7SEM distance traveled (cm) over 105min, beginning 15min after the first injection of saline or MDMA (5mg/kg i.p.) in the morning of day 2 or the
challenge dose of MDMA on day 18. The line graph in panel b shows the time course of horizontal activity in 15min time blocks for105min after injecting
MDMA on day 18. The data were statistically evaluated using a two-way ANOVA with repeated measures over day of injection (panel a) or time (panel b).
Panel a: TreatmentF(3,29)¼ 10.068, po0.001; dayF(1,29)¼ 82.725, po0.001, interactionF(3,29)¼ 13.762, po0.001. *po0.05 compared with day 2 within
each treatment group; wpo0.05 compared with the saline-pretreated rats on day 18. Panel b: TreatmentF(3,29)¼ 8.11, po 0.001; timeF(6,174)¼ 83.373,
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bregma. Spots correspond to the cannulae placements from the data plotted in panels a and b (group MDMA/SCH 23390).
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mPFC. Infusion of SKF 81297, akin to SCH 23390,
completely blocked the expression of MDMA-induced
behavioral sensitization, although it did not alter the
activating effects of MDMA in the saline-pretreated group
(Figure 3). The dose of SKF 81297 was chosen according to a
previous study by Sorg et al (2001), showing that this dose
of SKF 81297 blocks the expression of cocaine sensitization.

Similarly, the 5-HT2C receptor agonist MK 212 (0.005 mg/
0.5 ml/side) administered to MDMA-naı̈ve animals did not
affect the stimulant effects of the challenge dose of MDMA,
but prevented the sensitized response in MDMA-pretreated
animals (Figure 4). In this case, the dose of MK 212 was
chosen based upon a previous study showing that MK 212
(0.05 mg/side) does not alter the activating effects of cocaine
(Filip and Cunningham, 2003). Under our experimental
conditions, however, such a dose did significantly attenuate
the distance traveled by an acute dose of MDMA (data not
shown). For this reason, we used a 10-fold lower dose of
MK 212, which, in any case, resulted in the prevention of
MDMA-induced sensitization.

The Suppression of MDMA Sensitization by SCH 23390
is Reversed by Coadministration of the 5-HT2C Receptor
Antagonist, RS 102221

In a final set of experiments, the 5-HT2C receptor
antagonist, RS 102221, was microinjected alone or in
combination with SCH 23390, 15 min before the challenge
dose of MDMA on day 18. In the first case, RS 102221
(0.15 mg/0.5 ml/side) by itself did not modify the activating
effects of MDMA in saline- or MDMA-pretreated animals
(Figure 5). On the contrary, when RS 102221 was coinfused
with SCH 23390, the blockade of MDMA sensitization by
0.1 mg of SCH 23390 was reversed by RS 102221 (Figure 6).
However, the combination of both drugs did not modify the
acute response to MDMA in drug-naı̈ve rats.

DISCUSSION

The main findings of our study are: (1) SCH 23390 in the
mPFC suppresses the expression of behavioral sensitization
to repeated MDMA; (2) D1 receptor activation by SKF 81297
in the mPFC also blocks the expression of MDMA
sensitization; (3) these same results were achieved after
5-HT2C receptor stimulation by MK 212; and (4) the 5-HT2C

receptor antagonist, RS 102221, reverses the prevention of
MDMA-induced sensitization by SCH 23390.

We have previously shown that systemic injections of the
putative D1 receptor antagonist, SCH 23390, block the
expression but not the induction of MDMA-induced
behavioral sensitization (Ramos et al, 2004). These effects
are similar to what has been previously described for
cocaine (McCreary and Marsden, 1993; Mattingly et al,
1994; Tella, 1994; Martin-Iverson and Reimer, 1994; White
et al, 1998). Furthermore, akin to what has also been shown
for cocaine (Pierce and Kalivas, 1997), the microinjection of
SCH 23390 into the core of the NAc prevents the expression
of MDMA sensitization (Ramos et al, 2004). Owing to these
similarities between cocaine and MDMA, and because the
expression of cocaine sensitization is regulated by dopa-
mine transmission in the mPFC (Prasad et al, 1999; Sorg
et al, 2001), we went further to examine whether the local
application of SCH 23390 in this brain region would also
affect the expression of MDMA sensitization.

A large amount of data have implicated the glutamatergic
projections arising from the mPFC to the NAc and to the
VTA in the development of both amphetamine and cocaine
sensitization (eg Wolf et al, 1995; Cador et al, 1999; Li et al,
1999a; see also review by Vanderschuren and Kalivas, 2000).
However, while different studies have excluded any role of
the mPFC in the expression of amphetamine sensitization
(eg Li and Wolf, 1997), results from different laboratories
suggest that alterations in glutamate signaling are involved
in the expression of cocaine sensitization. Thus, ibotenic
acid lesions of the dorsal mPFC (but not the ventral mPFC)
block the expression of cocaine sensitization and the
sensitized glutamate release in the NAc (Pierce et al, 1998;
but see Li et al, 1999b). Furthermore, intra-mPFC micro-
injection of amphetamine or the D1 receptor agonist SKF
81297 prevents the expression of cocaine sensitization
(Prasad et al, 1999; Sorg et al, 2001; see also Vanderschuren
and Kalivas, 2000 for a review).
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In this study, we now report that blockade of mPFC D1
receptors with SCH 23390 increases locomotion in MDMA-
naı̈ve rats, which is in agreement with the contention that
the relationship between mPFC dopamine and locomotion
occurs directly by dopamine’s inhibitory action on ex-
citatory amino-acid neurons in the mPFC. This hypothesis
is congruent with the ability of cortical DA transmission
for inhibiting spontaneous (Bubser and Schmidt, 1990),
novelty-induced (Radcliffe and Erwin, 1996) and psychos-
timulant-induced (Vezina et al, 1991; Banks and Gratton,

1995; Beyer and Steketee, 2002; Steketee, 2003) locomotor
activity. Our results also show that, akin to cocaine (Prasad
et al, 1999; Sorg et al, 2001), the D1 receptor agonist SKF
81297 blocks the expression of MDMA-induced behavioral
sensitization, providing further support for the putative
inhibitory role of dopaminergic innervation of the mPFC
on cortical excitatory efferent projections that innervate
subcortical areas.

Accordingly, as it does in drug-naı̈ve animals, D1 receptor
blockade by SCH 23390 in the mPFC would have been
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Figure 3 Effect of intra-mPFC infusion of SKF 81297 (0.1 mg/0.5 ml/side) on the expression of MDMA-induced sensitization. The bar graph in panel a
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treatment group; wpo0.05 compared with the saline-pretreated rats on day 18. Panel b: TreatmentF(3,42)¼ 3.778, po0.05; timeF(6,252)¼ 54.677,
po0.001; interactionF(18,204)¼ 2.041, po0.05. *po0.05 vs the rest of the groups. (c) Coronal sections taken from the Atlas of Paxinos and Watson
(1997) at the level of the prefrontal cortex. The numbers indicate mm anterior to bregma. Spots correspond to the cannulae placements from the data
plotted in panels a and b (group MDMA/SKF 81297).
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expected to increase locomotion in MDMA-sensitized rats
and not the opposite. Then, how does SCH 23390 block
MDMA sensitization? The answer probably relies on its
pharmacological properties. Thus, and although taken into
account in very few studies, SCH 23390 also stimulates
5-HT2C receptors, exhibiting a fairly good affinity for these
receptors (KiE0.3 nM for D1 receptors vs KiE6.3 nM for
5-HT2C receptors; Briggs et al, 1991; Bourne, 2001; Millan

et al, 2001). Iontophoretic application of 5-HT ligands
suppresses spontaneous firing of PFC neurons in a 5-HT2C

receptor-dependent manner (Bergqvist et al, 1999), suggest-
ing that the 5-HT2C receptor limits the excitability of
cortical pyramidal neurons (Carr et al, 2002). Therefore, it
could be thought that SCH 23390 is capable of blocking
MDMA sensitization by stimulating mPFC 5-HT2C recep-
tors. The support for this hypothesis comes from our data
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showing that the 5-HT2C receptor agonist MK 212
completely prevents the expression of sensitization in
MDMA-pretreated animals.

Previous studies by Pan and Wang (1991a, b) showed that
the inhibition of pyramidal cells in the prefrontal cortex
produced by MDMA is mediated mainly through the
serotonergic system. Moreover, it has been shown that
damage produced by the neurotoxin 5,7-dihydroxytrypta-
mine (5,7-DHT) significantly increases the inhibitory effects

of serotonin on frontal cortex pyramidal cells, while the
response of these cells to the iontophoresis of dopamine is
attenuated (Ashby et al, 1994). Therefore, although specu-
lative, lesions of the serotonergic terminals induced by
repeated MDMA injections (Aguirre et al, 1995) could
render these cells more sensitive to the inhibitory effects of
5-HT2C receptor stimulation by SCH 23390. Further support
for this contention comes from the demonstration that
classical denervation supersensitivity of 5-HT2C develops
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following depletion of 5-HT with 5,7-DHT. For example,
5-HT2C receptor ligand binding (Conn et al, 1987), the
5-HT2C-like immunoreactivity (Sharma et al, 1997), and the
behavioral consequences of 5-HT2C receptor stimulation
(Lucki et al, 1989) are increased following 5,7-DHT
pretreatment. It is also note worthy that a similar MDMA
treatment as the one used in this study produces a long-
term increase of 5-HT2C receptor mRNA expression in the
hippocampus (Yau et al, 1994).

On the other hand, there is a large body of evidence
showing that MDMA-induced 5-HT release contributes to
MDMA’s effect on dopamine release (Koch and Galloway,
1997). Thus, pharmacological inhibition of MDMA-induced
5-HT release attenuates MDMA-induced striatal DA release
(Gudelsky and Nash, 1996; Koch and Galloway, 1997).
Similarly, the nonselective 5-HT2A/2C receptor antagonist
ritanserin attenuates MDMA-induced increases in DA
release in the nigrostriatal pathway (Yamamoto et al,
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1995), while 5-HT2A receptor activation is necessary
for MDMA-induced DA release (Schmidt et al, 1992). We
do not know of any previous work showing that a
neurotoxic MDMA treatment similar to the one used in
our experiments decreases dopamine release in the
mPFC after a challenge dose of MDMA. However, in a
recent study by Matuszewich et al (2002), it was shown that
the depletion of 5-HT after repeated injections of MDMA
leads to an attenuation of extracellular dopamine concen-
trations in the prefrontal cortex in response to a behavioral
challenge (ie immobilization stress). These later authors
suggested that the removal of the normal 5-HT-mediated
inhibition of GABAergic tone on dopamine cell bodies
of the VTA (Bankson and Yamamoto, 2004) may explain
the inhibition of stress-induced cortical dopamine release
after neurotoxic doses of MDMA. According to the
above-mentioned studies, it could be speculated that
5-HT depletion caused by the MDMA sensitization protocol
would decrease the forebrain dopamine release in response
to a challenge dose of MDMA. This might explain
the opposite results found after SCH 23390 in drug-naı̈ve
rats vs MDMA-pretreated animals on day 18. Thus, in
saline-pretreated rats, a systemic injection of MDMA would
increase 5-HT and dopamine release in the mPFC. In
this case, the main effect of SCH 23390 should be
the blockade of D1 receptors and not 5-HT2C receptor
stimulation. This, in turn, would increase locomotor activity
(see Figures 1 and 2). By contrast, in MDMA-pretreated
rats, a blunted dopamine release would occur in the mPFC
in response to a challenge dose of MDMA. In this case,
the main effect of SCH 23390 is more likely dependent
on its ability to stimulate 5-HT2C receptors after a
challenge dose of MDMA on day 18. This, in turn,
would result in the blockade of MDMA-induced sensitiza-
tion (Figure 1). This is in accordance with the data showing
that the lowest dose of SCH 23390 used (0.01 mg/side)
was relatively ineffective at inhibiting MDMA-sensitized
behavior, yet had a pronounced effect on the acute
behavioral activity of MDMA. Actually, SCH 23390
increased locomotor activity without any apparent
dose–response effect. By contrast, there exists a dose–
response effect of SCH 23390 in the blockade of MDMA
sensitization. Owing to its affinity profile, this may reflect a
more selective effect of SCH 23390 as a D1 receptor
antagonist at lower doses, while higher doses of SCH 23390
are necessary to block MDMA sensitization through 5-HT2C

receptor stimulation.
Our data also show that the 5-HT2C receptor antagonist

RS 102221 reverses the blockade of MDMA sensitization
caused by SCH 23390, further supporting our hypothesis
that SCH 23390 prevents the expression of MDMA-induced
sensitization by activating mPFC 5-HT2C receptors and not
by blocking D1 receptors located in this brain region. It
should be noted, however, that the RS/SCH combination did
not increase locomotion in MDMA-naı̈ve rats as it would
have been expected. We do not have a clear explanation for
this fact. It is known that RS 102221 or SCH 23390 injected
into the NAc block the hyperactivity of cocaine and/or
MDMA (McMahon et al, 2001; Filip and Cunningham, 2002;
Ramos et al, 2004). It is possible then that the RS/SCH
combination diffused to the Nac as some of the animals in
this group exhibited cannulae placements in a very close

proximity to the ventral portion of the prefrontal cortex (ie
the infralimbic mPFC, see Figure 6C).

Finally, it is important to note that DA in the mPFC has
been shown to be a modulatory neurotransmitter (see
review by Seamans and Yang, 2004). Therefore, depending
on the contribution and interaction of DA with other
cortical systems, including glutamate (Ramos et al, 2005)
and GABA (Simantov and Peng, 2004), different responses
may occur. These complex interactions between multiple
neurotransmitter systems and/or brain regions warrant also
consideration when interpreting the results of this and other
studies.

In summary, our findings show that D1 or 5-HT2C

receptor stimulation in the mPFC is sufficient to prevent the
expression of MDMA sensitization. In a similar manner,
they also indicate that the blockade of MDMA sensitization
by SCH 23390 is mediated by 5-HT2C receptor stimulation
excluding any role for mPFC D1 receptor blockade.
Therefore, we believe that under some circumstances, the
stimulation of 5-HT2C receptors by SCH 23390 is not a
minor issue and should be considered when interpreting
future data. In any case, due to the popularity of this drug of
abuse among young people, more studies examining the
long-term consequences after repeated MDMA administra-
tion are needed.
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