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The Present State of Some Problems in the Theory of Numbers.1 

By Prof. L. J. MoRDELL, F.R.S. 

THE theory of numbers, which was called the 
queen of mathematics by Gauss, the originator 

of the modern theory, still remains supreme. The 
present era is pre-eminently one in which she 
dominates the mathematical world. Her willing, 
loyal, and devoted subjects include the foremost 
mathematicians in every land. Their recent achieve
ments bear comparison in difficulty and significance 
with those of any other period. Their propaganda 
in the last few years includes a surprisingly large 
number of thrilling treatises, which deal with 
most aspects of her conquests, and far exceed in 
number and importance those dealing with any 
other advanced mathematical subject. There is no 
lack of effort to present the most recent develop
ments in as inviting and attractive a form as 
possible. One need only mention recent books in 
the last few years by Bachmann, Heeke, Landau, 
and Feuter. No small part of their subject-matter 
is closely related to or perhaps had its founda
tions in one or more of the six problems I have 
selected for discussion, which are associated with 
such distinguished names, namely : 

1. Euler's Three Biquadrate Problem. 
2. Fermat's Last Theorem. 
3. The Cubic Indeterminate Equation. 
4. Gauss' Class Number Problem. 
5. Dirichlet's Divisor Problem. 
6. Minkowski's Theorem on the Product of Linear 

Forms. 

Some of these problems are comparatively new, 
such as (5) and (6), and testify to the wonderful 
freshness and vitality of the theory of numbers. 
The age of the others can be measured in centuries, 
particularly (3), special examples of which have 
been known for about two thousand years. 

Their solutions are in every state of completion or 
rather incompletion, except perhaps for (3), which I 
solved a few years ago. Although some progress has 
been made with most of the others, except (1), they 
present difficulties which severely tax and seem 
beyond the powers of present-day mathematics. 
The slightest advances are made only by the most 
venturesome and heroic efforts, how much so can 
be easily appreciated by those who have even the 
slightest interest in the subject. These advances 
prove both useful and stimulating in many other 
fields, and it is difficult to exaggerate their import
ance and influence in the history of mathematics. 

There are many striking features about these 
problems which have been noticed by all workers 
in this field. A simplicity of enunciation is com
bined with the fact that many of its most beautiful 
and startling results are originally in most 
unexpected and complicated ways. It is generally 
after many years that the simple and apparently 
natural method is discovered. It is only then that 
the proofs can be appreciated by greater numbers, 

1 A lecture given to the Manchester Literary and Philosophical 
Society on Nov. 15, 1927. 
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just perhaps as the rough diamond only reveals its 
beauty after it has been polished and cut. 

EuLER's THREE BIQUADRATE THEOREM. 
This states that the sum of three biquadrates 

cannot be another biquadrate unless two of them 
are zero; i.e. if integers a, b, c, d satisfy the equation, 

a4+b4+c4=d4, 

then two of a, b, c must be zero. 
It is truly remarkable that this simple theorem, 

the truth of which was conjectured by Euler more 
than 150 years ago, has neither been proved nor 
disproved. Further, it has been found absolutely 
impossible to make any headway with this problem. 
Indeed, it would be difficult to mention any other 
which has yielded so little to the efforts of those 
who have attempted its solution. Hence only some 
half-dozen references are to be found in the mathe
matical literature· to papers dealing with it. The 
most important result known is a numerical 
verification by Aubry, in 1912, that the theorem 
is true for Jd/ £: 1040. 

The theorem cannot be extended to four fourth 
powers, as Norrie in 1911 showed that 

304 + 1204 + 2724 + 3154 = 3534• 

The particular case when one of a, b, c is zero, so 
that the equation is 

a4+b4=c4, 

dates back from Fermat. It is proved by his 
method of infinite descent, i.e. if this equation or 
the less restricted one 

a4 +b4 =c2, 

admits of integer solutions where abc is not equal 
to zero, then it must have other integer solutions 
a1, b1, c1 where a1b1c1 is not equal to zero, and 
where c1 is numerically less than c. By continuing 
this process we are led to the existence of a solution 
wherein c is not zero and is numerically less than 
some definite number (here 1), and it can be easily 
verified by trial whether this is so. This example 
is a particular case of the second problem. 

FERMAT's LAST THEOREM. 
This states that if integers x, y, z satisfy the 

equation 
xn+yn=zn, 

where n is a given integer greater than 2, then x or 
y equals zero. 

This theorem was discovered about 1637 by 
Fermat, who wrote upon the margin of his copy of 
the works of Diophantos, "I have discovered a 
truly remarkable proof which this margin is too 
small to contain." The theorem has attained 
world-wide celebrity because of the Wolfskell prize 
of 100,000 marks established in 1907 for the first 
demonstration of its proof. The prize has not -yet 
been won. 

The most important results are due to Kummer 
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who spent a great part of his life upon it. Assuming 
that n is an odd prime p, which involves no loss of 
generality, he proved the truth of the theorem for 
values of n included in certain general classes, e.g. 
when n is not a divisor of the numerator of one of 

the first Bernouillian numbers, Br being defined 

as the coefficient of ( -l)r- 1x 2rj2r! in the expansion 
in ascending power of x of xfe"' -I, and in particular 
for 3""' n,;; IOO, though his proof was not complete 
for a few values of n. It is not known whether the 
values of n for which Kummer proved his results are 
infinite in number. Though his papers were written 
about the middle of the last century, no further 
important results were obtained until I909. 
Kummer and his successors in the discussion of the 
problem divided it into two cases, according as 
xyz is not or is divisible by p. The first case is the 
easiest, and for the theorem to hold for this one, 
Wieferich showed in I909 that 2P-1= I (mod p2), 
that is, 2P-1-I is exactly divisible by p2. 

The first value of p for which this is true was 
shown by Meissner in I9I3 to be I093. But 
Wieferich's theorem is a particular case of the more 
general one that if r is any prime less than p, then 
rP- 1 =I (mod p 2 ) if the equation xP+yP=zP holds 
with xyz prime top. This was proved for r = 3 by 
Mirimanoff, for r = 5 by Vandiver, and by Frobenius 
for r =II, I7, and when p =I (mod 6), for r =7, I3, 
19. The proofs except when r =2 or 3 are very 
complicated and suggest that the real source of 
these results is still to be found. 

Fermat's last theorem is the most important of 
all the problems that I shall mention, as the efforts 
made in attempting its solution led Kummer to 
discoveries that marked the beginning of the theory 
of algebraic numbers. This discovery later revealed 
wonderful and beautiful relations between the 
theory of numbers, elliptic functions, automorphic 
functions, and many other parts of the theory of 
functions of a complex variable. 

In no other part of the theory numbers as in 
Fermat's last theorem are the investigator and 
reader called upon to cj.eal with such abstract con
ceptions, such involved results, many of which are 
arrived at by a long chain of reasoning ; and such 
general theories, e.g.laws of reciprocity, which have 
their foundations deep in the arithmetical theory. 
No other problem has been attempted by so many 
distinguished mathematicians, and very few can 
have led to such remarkable developments. 

CuBIC INDETERMINATE EQUATIONS. 

This problem is to find the rational values of x, y, 
satisfying the general equation of the third degree 
in x, y with rational coefficients, namely, 
ax3 + bx2y + cxy2 + dy3 + ex2 

+fxy +gy2 +hx +ky +i =0, 
i.e. to find the rational points on this cubic curve 
which it is supposed has no double point, as then 
the problem is comparatively simple. 

It is the oldest of those with which I am dealing, 
and particular cases of this question have been 
considered so long as two thousand years ago. Its 
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solution proved intractable until six years ago, when 
I discovered the general solution, which is now so 
obvious that it is given in lectures at some uni
versities. 

A great deal of what was done on this question 
for many years can be explained in a few sentences. 
Any straight line meets the curve in three points. 
If two of these points are rational, the third is found 
from a simple equation, so that its co-ordinates will 
certainly be rational. In particular the tangent to 
the cubic at a rational point will meet it in another 
rational point. 

Now suppose we have already found, perhaps 
by trial, n rational points on the curve say Plt 
P 2 ••• Pm e.g. if x 3 +y3 =9, x=2, y=l is an 
obvious point. The tangent to the curve at P 1 will 
meet it again in another rational point P'1, distinct 
from P 1 unless P 1 is a point of inflexion. So the 
tangent at P'1 meets the curve in general in another 
point P"v etc., and we may expect to find an 
infinite number of rational points starting from P 1, 

though it is conceivable that we may find only a 
finite number of points forming a closed polygon. 
Similarly, we may expect to find an infinite number 
starting from P 2 if P 2 is not included in the group 
arising from P 1, and so for P 3, etc. But we can 
find another rational point, Q1, 2 from the inter
section of the line P 1 P 2 ••• and the curve. We 
may now either draw a tangent to the curve at 
Q1, 2, or draw the secants joining Q1, 2 and the points 
P 2, P 3, etc., and find their intersections with the 
curve. 

Clearly, in this way, we can find in general an 
infinite number of other rational points by starting 
from n known rational points, say primary points for 
short. From the time of Fermat onwards, mathe
maticians had to content themselves with doing 
little more than deriving for special equations 
explicit formulm for the co-ordinates of the points 
found from one or more given ones, e.g.: for 

ax3 +by3 =c, y2 =px3 +q. 
Even prizes established by learned societies led to 
no solution. 

Finally, I showed that all the rational solutions 
of the general equation could be found from a finite 
number of primary ones by drawing tangents and 
secants as above. In other words, the method of 
infinite descent gives all the solutions ; and there 
is now no theoretical difficulty in finding them. 

GAuss' CLASS NuMBER PROBLEM. 

Let - D be a given negative number and let 
ax2 + bxy + cy2 be any quadratic form of deter
minant -D, i.e., a, b, care any integers for which 
b2 - 4ac = -D. This requires that D = 0, I (mod 4), 
and then an infinity of integers a, b, c, can be found, 
and so an infinite number of quadratic forms of given 
determinant -D. It is a classic and elementary 
theorem that all these quadratic forms can be derived 
from a finite number, H (D) say, by means of a linear 
transformation with integer coefficients and deter
minant unity. It was conjectured by Gauss more 
than I25 years ago that there are only a finite 
number of values of D for a given H (D). This 
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has not yet been proved, though a formula and 
many recurring formulre are known for H (D). 
Heeke, making use of an unproved hypothesis 
about the zeros of a function analogous to the 
Riemann Zeta function, has given a simple proof. 
But I wish to deal more particularly with what 
would appear to be the very simple case when 
H (D)= l. This is so for D =3, 4, 7, 8, 11, 12, 16, 
19, 27, 28, 43, 67, 163. It is easily verified that for 
any others, D must be a prime of the form 8n + 3. 
It was shown in 1911 by Dickson that there is no 
other value of D less than 1,500,000. 

It may seem surprising that the truth of the 
conjecture about H (D)= 1, is equivalent to the 
fact that the formula z2 + z + 2n + 1 gives only prime 
numbers for the integers z satisfying 0 £c z £c 2n -1 
as was proved by Rabinovitch (Rainich), and this is 
easily verified for D=43, 67,163, when n=5, 8, 20. 

It is also equivalent to the statement that the 
only solutions in non-negative integers of 

yz +zx +xy=D=8n+3 
are given by 

(x, y, z) = (0, 1, 8n + 3), (1, 3, 2n), (1, 1, 4n + 1), 
and those derived from these by permuting x, y, z. 

Neither of these simple facts has, however, 
proved of use in proving the theorem. 

DIRICHLET'S DIVISOR PROBLEM. 

The number of divisors d (n) of a given integer n 
is a function of n which changes very irregularly 
with n, and is really the number of positive integer 
solutions of xy =n. If n is a prime number 
d (n) =2, while if n=paqbrc ... where p, q, r 
are different primes 

d(n) =(a+ 1)(b + l)(c + 1) .... 
But though d(n) does not depend so much upon the 
magnitude of n as upon its form, it is different with 

d(1) +d(2) + ... d(n). 
This really represents the number of positive 

integer solutions of xy £c n, i.e. the number of points 
with positive integral co-ordinates lying in the area 
bounded by the rectangular hyperbola xy =n and 
the lines x = 1, y = 1, including the boundary in the 
area. The irregularities are smoothed out as it 
were, in the sum. Dirichlet showed in 1849 that 
d(1)+d(2)+ ... d(n)=n log n+(2y-1)n+R(n) 
where y =0·577 ... is Euler's constant, and R(n) 
the remainder or error term is less numerically 
than a constant multiple of yn. This is expressed 
by R( n) = 0( y n). For many years this was thought 
to be the best approximation to R(n). Voronoi 
proved, however, in 1903, that R(n) = 0 ( ,Vn log n). 
Van der Corput showed next that R(n) =O(na) 
with a= l- This result was arrived at in many 
different ways, arithmetical, geometrical, by the 
real variable, and by the complex variable. These 
all led to a= l and seemed to suggest that 0 ( Zfn) 
was the best approximation to the error term; 
though it was known from Hardy's work of 1915 
that in the error term, the index a ;, ! . Wonderful to 
relate, Van der Corput showed in 1922 by an ex
ceedingly difficult and complicated method that 
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a<33jl00. Simpler proofs have since been given 
by Littlewood, Walfisz, and Landau for the slightly 
less precise result a £c 37/112. 

This extraordinary result appears not to be final; 
but to have arrived at it is one of the most startling 
achievements of the present day. The problem is 
one which has made the greatest demands upon 
many branches of mathematics. The most delicate 
questions of convergence, of the theory of functions, 
and the most adept manipulation of inequalities 
are all required. 

In this problem, as opposed to the others, it is 
the methods of the analytical theory of numbers 
which have proved most successful. The most 
important stage in the proof depends upon Weyl's 
method of finding upper limits for large values of n 
to sums such as 

cos(j(l))+cos(j(2))+ ... cos(j(n)). 
These approximations have also played a vital part 
in Waring's problem and in the recent theory of the 
Riemann Zeta function. 

MINKOWSKI'S THEOREM ON THE PRODUCT OF 
LINEAR FoRMS. 

This is the most recent of these problems, but 
it has features that mark it as a worthy com
panion to those that have preceded it. 

Let 
L 1 = a11x1 + a12x2 + 
L2 = a21 xl + a22x2 + 

alnXn -Cl, 

a2nXn -C2, 

Ln = anlXl + an2X2 + . annXn - Cn, 

be n linear non-homogeneous forms where the a's 
and c's are any real constants subject to the 
restriction that the determinant I ars I= l, which 
it may be noted in no wise detracts from the 
generality of the following theorem. Then it is sup
posed that there are integer values for x1 , x2, ••• Xn, 

for which the product IL1L 2 ..• Ln I £c 2-n. 
The proof for n = 2 was first given by Minkowski. 

Remak has given another, and I am now publishing 
one which proves it in a very simple way. But a 
different state of affairs arises for n = 3. Remak 
gave in 1921 an extraordinarily complicated and 
intricate proof in fifty pages. It depends upon the 
arithmetic theory of the definite ternary quadratic, 
and involves ideas closely allied to those occurring 
in the problem of the closest packing of spheres. 
Unfortunately, it appears to be exceedingly difficult 
to extend the proof to the case n = 4, and it is not 
known whether the theorem is true for n;, 4, 
although it seems very likely. It is very rarely 
that the proof of the generalisation of a question 
to n dimensions proves so unattainable, especially 
when in similar questions, for example, in dealing 
with linear forms in which c1 = c 2 =. . . Cn = 0, the 
results for n variables are proved as easily as for two. 

It is fairly certain that in due course a very 
simple general proof will be found, making the truth 
of the theorem almost intuitive. Such a one could 
be found by generalising to n variables the simple 
theorem that if I a I ,c; 1, I b I £c 1, there is a range of 
values of width at least two for x for which 

lax2 +bxl £c l. 
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