Research Items.

Chinese Goncie Major E. C. Kenny, in Man for Scptember dacifbes the two types of rare 'Chinese gongs ' frowe aro found in Burma, and usually callod N dy the English residents there 'Karen War Drfyes. They are now only found in the little frontier State of Karenni. The gongs are of two types, and of these the taller and more modern were made up to a time so recent as 1894 by tho Shan for their overlords the Karen. The flatter ancient type is beyond doubt of Chinese origin, and is very rare. The Karen assert that these latter were not made by human agency at all, but by spirits, who are said to assume the forms of beautiful maidens and to sing sweetly in the jungle on the outskirts of villages, attracting youths whom they destroy. One gong of this type in the British Museum is dated "Made by Chang Fu in the 7 month of the 4 year of the reign of Chien Hsing," i.e. a.d. 226. The gongs are designated ' male ' and 'female ' according to whether they are decorated or not, the latter being the male, and are frequently found in pairs. The drums are used for crop and other festivals, and poriodically for summoning the outlying villages ; but apparently never for war.

The Stone Battle-axe.-The spread of the stone or copper battle-axe is discussed by Prof. H. J. Fleure 7 Md Mr. Harold Peake in a communication in Maydor September. They take the view that the axe-hammer with a shaft-hole was probably first made in metal and that the oldest example published is that from Cemetery A at Kish, dated at 3100 3000 b.c., although older examples have recently come from Ur. Although it may seem a far cry from Mesopotamia to a European centre, the connexion between early Kuban and the Cyclades has been domonstrated, while the former has too many elements of kinship with Mesopotamia to leave any doubt of their common origin. It is suggested that it was through the Cycladic contact with Kuban that the battle-axe entered Cycladic Minoan culture in Early Minoan II. The carly metal axe of copper had the butt ond bent round to form the shaft-hole, and the earliest cast spocimons had the hole nearer one end. When copied in stone the axe would have one cutting-edge with the shaft toward the butt end, though not so near as in the metal type, to avoid splitting. It has been argued that of the British perforated axes, those with the hole nearer one end are carlier than those in which it is situated centrally. It is agreed that in the Baltic area the stone battleaxe underwent great development, but even here a copper axo from Norway would serve as a metal prototype. The authors' view is that in the Baltic area the only culture was that of the shell mounds until the Megalithie culture impinged on it from the south-west and the culture of the battle-axe and fine flint work came from the south-tast.

International Herring Investigations.-Rapportset Proces-verbaux des Réunions, vol. 41, of the Conseil Pgrm Internat. pour l'Expl. de la Mer, contains a gopd deal of information concerning the present 510 to (of our knowledge of the herrings in tho North siop and sots out the programmes of investigations which are being undertaken by the countries interested. The immense value of continuous observation over an exlended period is admirably demonstrated by the striking results achieved by the Norwegian investigators through an unbroken series of years from 1907 to the present time. Mr. Einer Lea's preliminary report on these results, and his discussion on the most
satisfactory method of summarising the observations for one season so as to give the best possible representation of tho age-composition of the stock, will be read with interest. The report on Scottish investigations regarding the larval and post-larval stages of herring in the northern North Sea not only indicates the immediate difficultics experienced, but also demonstrates the general fact that great caution must be exercised when estimating age from scales of adult fishes. Evidence is advanced that some of the Scottish post-larve acquire scales during the calendar year in which they are born, so that their first winter of lifo is recorded on the scale as a winter-ring. Others, however, remain in the unscaled condition until the year following birth, the first winter-ring not being formed on tho scale until the second winter of life. This fact very materially adds to the difficulty of estimating the age and origin of the adult fishes which visit Scottish waters.

Fish Egas and Larvf from the Java Sea.In vol. 8 and vol. 9 (1926) of De Treubia, Dr. H. C. Delsman givos a detailed account of his studies of fish ofond larve from the Java Sea. His observaticfis (Pthe time of the day at which spawning appears to pgeur, and of the length of the incubation period of some of the eggs, are particularly interesting. Thus, the eggs of three species of the genus Caranx are all set free at a definite time towards midnight. At 9 A.m. on the following morning, that is, less than 12 hours after, those of C. macrosoma hatch out. Between 11 A.m. and 1 f.m. those of C. kurra hatch, while at 6 P.m. the young of C. crumenophthalmus emerge. In the course of egg-sampling with townets, therefore, the eggs of C. macrosoma are to be found only in early morning hauls; those of C. kurra disappoar from the tow-nets at about 1 P.m., so that in the afternoon only those of C. crumenophthalmus remain. These results are in accordance with a general rule that larger, more yolk-laden eggs take a longer time for their development than smaller ones with less yolk. Equally striking is the author's account of the growth of the embryo assigned to Clupea fimbriata. Eggs taken at 7 A.M. showed only a small germinal dise and had evidently been laid shortly before capture. At 8.45 a.m. the germinal disc had grown half round the circumference of the egg, and the first indication of the embryo had appeared. At 10.45 A.m. the blastopore closed and the rudiment of the embryo had grown more distinct. During the afternoon the tail grew out, the embryo began to 'sprawl ' within the spacious egg-membrane, and at 6 ғ.m. it hatched. Some idea of the speedingup of the incubation period can bo gathered from the comparison between the hatching of scomber kanagurta in less than 24 hours, and that of the mackerel (Scomber scomber) in 6 days in British waters, or with the 5 days for the American mackerol.

Jafanese Frgatrwattr Branchiopoda.-M. Ueno (Mem. Coll $\mid \mathbb{S} p$. K yoto Imp. Unin., B, vol. 2, No. 5, art. 12, 10 gives a list and some details of the generm fivecies, and varieties of freshwater branchiopodgh pitherto found in Japan, together with a fow ropord from eastorn China. Of the thirty-one snociof of Cladocera, twenty-five are found also in Europe, but the Japanese Phyllopoda belong to species not represented in Europe. The author is inclined to believe that Japanese examples of the Cladocera are generally smaller in size than corresponding specimens from Europe or America, but he adds that further study is required before this can be decided.

Growth of Paramg luum.-F. Mizuno has made careful observatipaof(Science Reports, Tôhuku Imp. Univ., 4th spege, vol. 2, No. 4, 1927) on the normal growih of $\$$ ramocium caudatum. He found that at 0 fomperature of $24^{\circ}-26^{\circ} \mathrm{C}$., division occurs at the end/bt elght or nine hours and that there was no difference in the rate of division between examples in light and others in the dark. More than 600 specimens were killed at definite intervals after fission had occurred and they were drawn, their length and breadth measured, and their area determined by a planimeter. Immediately after fission, the daughter Paramœecia increase markedly in length but decrease in breadth; that is, there is a change in their form. Size cannot therefore be estimated by measuring only the length, and as the volume could not be accurately ascertained, the most satisfactory method appeared to be the careful determination of the area. When the areas of specimens killed at known times after fission are plotted, they show that the growth of Paramœcium is represented by a linear curve.

Lens Design.-In Scientific Paper of the Bureau of Standards, No. 558 , Mr. I. C. Gardner deals with the applicatign pf Che third order algebraic aberration equatign(s).1or a thin lens to the design of lenses to fulffhf cen conditions. Up to the present, there has bed $n b$ book giving the third order aberrations in a form quite satisfactory for this purpose, and it has been difficult for a designer to get any information between that given in elementary text-books and that to be found in works on instrument design and other specialised problems. The notation adopted is substantially that of von Rohr, but by the introduction of a modification in that of Taylor, it has been possible to give the results in each of the two notations. The sign of the distance of a point from the lens is positive if in moving with the incident light one passes through the lens before reaching the point. Designs of thin lenses and of systems containing thin lenses and prisms are worked out in detail by the author, and the paper of 130 pages should be of great help to the optical designer

Molecular Vogentisat Absolute Zero.-In two interesting paparof n the August number of the Journal of inf Chemical Society, S. Sugden has shown thaty top simple equation $D-\mathcal{d}=D_{o}\left(\mathrm{I}-T_{r}\right)^{3} /{ }^{10}$ applief fith great accuracy to Young's results for therfard and vapour densities of thirty substances. D, d a e the densities of liquid and saturated vapour, D_{o} is the density at the absolute zero, T_{r} is the reduced temperature. The equation contains two constants, D_{o} and the critical temperature, only. It is therefore possible to calculate M / D_{o}, the molecular volume at the absolute zero. This magnitude, V_{o}, is shown empirically to be a nearly constant fraction, the values ranging from $0 \cdot 264$ to $0 \cdot 280$, for a number of substances. The value for hydrogen in $0 \cdot 373$. The equation proposed by Sugden is a special case of a general one proposed by Verschaffelt, but the constants chosen give better results. The results apply also to associated liquids. It is further shown that values of V_{o} can be predicted by adding together certain characteristic constants for the atoms and structures present in the molecule for a very large number of compounds.

Return Cifultits in Electric Tramways.-In electric teprey systams for the sake of economy, rails as part of the circuit in chstomary to uge the rails as part of the circuit
cotiocting the ayirimos at the tramway power
station with the notors on the car. These rails are station with he, notors on the car. These rails are
poles of the dynamos, and as they have to carry a large current, an appreciable difference of potential exists between various points on their lengths. As they are not insulated, only part of the return current flows by the rails, the rest flowing through the earth, the pipes of water and gas companies, and the coverings of telephone cables. The possibilities of serious electrolytic corrosion in large telephone cables by these leakage or 'vagabond' currents has made traction engineers consider whether the present precautions are sufficient. In World Power for September, G. W. Stubbings gives a helpful contribution to the subject. The Ministry of Transport has imposed the regulation that the difference of potential between any two points on the rails must not exceed 7 volts. This regulation has been in use for many years and so far has been found quite satisfactory. The replacement of overhead telephone wires by underground cables is a new fact that has to be considered. When the current flows from the cable sheath to the rails there are risks of serious erosion occurring. A further restriction has been imposed, that the maximum potential difference between the rails and a buried pipe in its vicinity shall not exceed 1.5 volts when the rail is negative to the pipe and 4.5 volts when the rail is positive to the pipe. This restriction seems desirable, but to apply it equitably in practice is difficult. In Great Britain, traction engineers as a rule rely on maintaining the potentials of the rails low by means of special dynamos taking current from definite points of the rails through insulated circuits. Mr. Stubbings considers the relative merits of this method and that of using special copper conductors. Many interesting mathematical problems arise.

Electric Momexter of Organic Molecules in Benzene Squath-Measurements of the dielectric constantof of 6 inary systems in which the first compon\&ny (x.9. benzene) is known to have no electric moffrot allow of the calculation of the electric moment of thd molecule of the second component. The equation used is a combination of the familiar Clausius-Mosotti law with a result deduced by Debye, in which the molar polarisation is shown to be a linear function of the reciprocal of the absolute temperature. In the July number of the Journal of the American Chemical Society, J. W. Williams and I. J. Krchma apply this formula to the results found with a number of solutions in benzene. The values for the electric moments of the solute molecules vary from zero for carbon tetrachloride to 1.70×10^{-18} for phenol; ethyl ether has the value $1 \cdot 22 \times 10^{-18}$, chloroform 1.10×10^{-18}, and chlorobenzene 1.55×10^{-18}. These are in good agreement with previous results with the pure substances. These results are clearly of importance in certain fields of speculation in organic chemistry. An interesting result is that the moment of symmetrical xylene is very small, whilst it is appreciable in the case of unsymmetrical xylene.

The Supposed Phosphorus Suboxide, $\mathrm{P}_{2} \mathrm{O}$.From tipne to time various lower oxides of phosphorus havech show to be impure amorphous phosphorus. One of them, Besson's oxide, $\mathrm{P}_{2} \mathrm{O}$, has been investigated by Chalk and Partington, whose results are described in the August number of the Journal of the Chemical Society. It is shown that the supposed oxide is again an impure form of amorphous phosphorous, contaminated with the materials used in the preparation described by Besson. The existence of an oxide of phosphorus below $\mathrm{P}_{4} \mathrm{O}_{6}$ should therefore still be regarded as extremely doubtful.

Growth of Paramg luum.-F. Mizuno has made careful observatipaof(Science Reports, Tôhuku Imp. Univ., 4th spege, vol. 2, No. 4, 1927) on the normal growih of $\$$ ramocium caudatum. He found that at 0 fomperature of $24^{\circ}-26^{\circ} \mathrm{C}$., division occurs at the end/bt elght or nine hours and that there was no difference in the rate of division between examples in light and others in the dark. More than 600 specimens were killed at definite intervals after fission had occurred and they were drawn, their length and breadth measured, and their area determined by a planimeter. Immediately after fission, the daughter Paramœecia increase markedly in length but decrease in breadth; that is, there is a change in their form. Size cannot therefore be estimated by measuring only the length, and as the volume could not be accurately ascertained, the most satisfactory method appeared to be the careful determination of the area. When the areas of specimens killed at known times after fission are plotted, they show that the growth of Paramœcium is represented by a linear curve.

Lens Design.-In Scientific Paper of the Bureau of Standards, No. 558 , Mr. I. C. Gardner deals with the applicatign pf Che third order algebraic aberration equatign(s).1or a thin lens to the design of lenses to fulffhf cen conditions. Up to the present, there has bed $n b$ book giving the third order aberrations in a form quite satisfactory for this purpose, and it has been difficult for a designer to get any information between that given in elementary text-books and that to be found in works on instrument design and other specialised problems. The notation adopted is substantially that of von Rohr, but by the introduction of a modification in that of Taylor, it has been possible to give the results in each of the two notations. The sign of the distance of a point from the lens is positive if in moving with the incident light one passes through the lens before reaching the point. Designs of thin lenses and of systems containing thin lenses and prisms are worked out in detail by the author, and the paper of 130 pages should be of great help to the optical designer

Molecular Vogentisat Absolute Zero.-In two interesting paparof n the August number of the Journal of inf Chemical Society, S. Sugden has shown thaty top simple equation $D-\mathcal{d}=D_{o}\left(\mathrm{I}-T_{r}\right)^{3} /{ }^{10}$ applief fith great accuracy to Young's results for therfard and vapour densities of thirty substances. D, d a e the densities of liquid and saturated vapour, D_{o} is the density at the absolute zero, T_{r} is the reduced temperature. The equation contains two constants, D_{o} and the critical temperature, only. It is therefore possible to calculate M / D_{o}, the molecular volume at the absolute zero. This magnitude, V_{o}, is shown empirically to be a nearly constant fraction, the values ranging from $0 \cdot 264$ to $0 \cdot 280$, for a number of substances. The value for hydrogen in $0 \cdot 373$. The equation proposed by Sugden is a special case of a general one proposed by Verschaffelt, but the constants chosen give better results. The results apply also to associated liquids. It is further shown that values of V_{o} can be predicted by adding together certain characteristic constants for the atoms and structures present in the molecule for a very large number of compounds.

Return Cifultits in Electric Tramways.-In electric teprey systams for the sake of economy, rails as part of the circuit in chstomary to uge the rails as part of the circuit
cotiocting the ayirimos at the tramway power
station with the notors on the car. These rails are station with he, notors on the car. These rails are
poles of the dynamos, and as they have to carry a large current, an appreciable difference of potential exists between various points on their lengths. As they are not insulated, only part of the return current flows by the rails, the rest flowing through the earth, the pipes of water and gas companies, and the coverings of telephone cables. The possibilities of serious electrolytic corrosion in large telephone cables by these leakage or 'vagabond' currents has made traction engineers consider whether the present precautions are sufficient. In World Power for September, G. W. Stubbings gives a helpful contribution to the subject. The Ministry of Transport has imposed the regulation that the difference of potential between any two points on the rails must not exceed 7 volts. This regulation has been in use for many years and so far has been found quite satisfactory. The replacement of overhead telephone wires by underground cables is a new fact that has to be considered. When the current flows from the cable sheath to the rails there are risks of serious erosion occurring. A further restriction has been imposed, that the maximum potential difference between the rails and a buried pipe in its vicinity shall not exceed 1.5 volts when the rail is negative to the pipe and 4.5 volts when the rail is positive to the pipe. This restriction seems desirable, but to apply it equitably in practice is difficult. In Great Britain, traction engineers as a rule rely on maintaining the potentials of the rails low by means of special dynamos taking current from definite points of the rails through insulated circuits. Mr. Stubbings considers the relative merits of this method and that of using special copper conductors. Many interesting mathematical problems arise.

Electric Momexter of Organic Molecules in Benzene Squath-Measurements of the dielectric constantof of 6 inary systems in which the first compon\&ny (x.9. benzene) is known to have no electric moffrot allow of the calculation of the electric moment of thd molecule of the second component. The equation used is a combination of the familiar Clausius-Mosotti law with a result deduced by Debye, in which the molar polarisation is shown to be a linear function of the reciprocal of the absolute temperature. In the July number of the Journal of the American Chemical Society, J. W. Williams and I. J. Krchma apply this formula to the results found with a number of solutions in benzene. The values for the electric moments of the solute molecules vary from zero for carbon tetrachloride to 1.70×10^{-18} for phenol; ethyl ether has the value $1 \cdot 22 \times 10^{-18}$, chloroform 1.10×10^{-18}, and chlorobenzene 1.55×10^{-18}. These are in good agreement with previous results with the pure substances. These results are clearly of importance in certain fields of speculation in organic chemistry. An interesting result is that the moment of symmetrical xylene is very small, whilst it is appreciable in the case of unsymmetrical xylene.

The Supposed Phosphorus Suboxide, $\mathrm{P}_{2} \mathrm{O}$.From tipne to time various lower oxides of phosphorus havech show to be impure amorphous phosphorus. One of them, Besson's oxide, $\mathrm{P}_{2} \mathrm{O}$, has been investigated by Chalk and Partington, whose results are described in the August number of the Journal of the Chemical Society. It is shown that the supposed oxide is again an impure form of amorphous phosphorous, contaminated with the materials used in the preparation described by Besson. The existence of an oxide of phosphorus below $\mathrm{P}_{4} \mathrm{O}_{6}$ should therefore still be regarded as extremely doubtful.

