societies and by the communal authorities. Sixty-four students altended the lectures upon orchard cultivation; ninety-two farriers were taught at the various veterinary colleges and schools throughout the country. The winter evening agricultural schools, reading clubs, and local libraries ali showed a considerable increase both in numbers and in attendance. Altogether some 23,400 persons attended agricultural schools or lectures on husbandry during the year. This is rather more than x per cent. of the total population of the country, and is good evidence that the people as a ruie do not neglect the opportunities given them of becoming successful agriculturists.

Boron IODIDE, BI_{3}, has been prepared by M. Moissan, and its properties, which are of a somewhat remarkable nature, investigated. It may be obtained in three ways: (I) by leading gaseous hydriodic acid mixed with the vapour of boron chloride, BCl_{3}, through a porcelain tube heated to redness; (2) by the action of iodine upon boron at a temperature of $700^{\circ}-800^{\circ} \mathrm{C}$. ; (3) by the action of hydriodic acid gas upon amorphous boron. The third method affords the best means of preparing the new substance in quantity. A current of gaseous hyduriodic acid is first well dried by passage through porous calcium iodide; it is then led over amorphous boron contained in a hard giass tube heated to a temperature approaching that of the softening of the glass. At the commencement of the experiment a small quantity of iodine vapour makes its appearance, and is aliowed to escape. When this ceases a dry receiver is attached to the end of the combustion tube, and a more or less deeply coloured crystalline product begins to collect. In a short time the reaction becomes very energetic, large quantities of the crystalline body being deposited, of a bright reddish-purple colour, and almost pure hydrogen escaping. The coloration is due to a small quantity of admixed iodine, for if the solid product is treated with carbon bisulphide it entirely dissolves, forming a solution of the same colour as that of iodine in carbon bisulphide, and which is rendered colourless by agitation with mercury. The solution in carbon bisulphide deposits on eyaporation colourless transparent tabular crystals, somewhat nacreous in appearance, of pure boron iodide. The crystals are very sensitive to light; their coloutiess solution in carbon bisulphide becomes deep red in half an hour, owing to the liberation of iodine under the influence of diffused daylight. The crystals melt at 43° to a liquid which boils undecomposed at 210°, without any appearance of free iodine vapours. The crystals are exceedingly hygroscopic, attracting moisture with great rapidity, and thereby suffering decomposition. In contact with water itself the decomposition is instantaneous, boric and hydriodic acids being formed, $\mathrm{BI}_{3}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{II}_{3} \mathrm{BO}_{3}+3 \mathrm{HI}$. When heated in air or oxygen, boron iodide burns readily with a brilliant flame deeply coloured with iodine vapour, clouds of boric anhydride, $\mathrm{B}_{2} \mathrm{O}_{3}$, being also produced. Melted sulphur attacks it likewise with considerable energy, iodine volatilizing, and a substance being formed which on the addition of water yields a precipitate of sulphur and evolves sulphuretted hydrogen, presumably a sulphide of boron. Phosphorus reacts in the cold with incandescence. With oxychloride of phosphorus, POCl_{3}, a crystalline compound appears to be formed with considerable rise of temperature. Silver fluoride at once invokes incandescence, a violent evolution of gaveous fluoride of boron, BF_{3}, occurring together with formation of silver iodide. Ethyl alcohol likewise reacts with rise of temperature, a product being obtained which on distillation yields ethyl iodide, the residue consisting of boric acid, $3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{BI}_{3}=\mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$. Ethyl ether forms with boron iodide a brown liquid, also with considerable evolution of heat, whicl appears to consist of ethyl iodide and boric ether: $3\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}+\mathrm{BI}_{3}=3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+\mathrm{B}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$; for on the addition of water to the product, ethyl iodide, boric acid, and alcohol are obtained.

The additions to the Zoological Society's Gardens during the past week include a Spiny-tailed Mastigure (Uromastix acinthinurus) from Algeria, presented by Mrs. W. Williams; two Chipping Squirreis (Tamias striaths) from North Americar presented by Mr. A. W. Jutson; a Brown Milvago (Milvago chimango) from South America, presented by Mr. J. Mand; three Puff Adders (Vipera arietans) from the Cape of Good Hope, three Egyptian Cobras (Naia haje) from Africa, presented by the Rev. G. H. R. Fisk, C.M.Z.S.; a Tuatera Lizard (Sphenodon punctatus) from New Zealand, presented by Mr. Thos. E. Phillips; a Red-spotted Lizard (Eremias mbro-punctatus) from the Pyramids of Dashoor, presented by Dr. Drewitt ; two Scorpions from Alexandria, presented by Mr. Sidney R. Carver; three Partridge Bronze-winged I'igeons (Geophaps scripia), a Brush Bronze-winged Pigeon (Phaps elegans), three Maned Geese (Bernicla jubata) from Australia, purchased.

OUR ASTRONOMICAL COLUMN.

The Solar Corona.--The fourteenth number of the Publications of the Astronomical Society of the Pacific contains several notes on the solar corona. Prof. Cbarroppin gives the results of an investigation into photographs of the corona, and recommends the following methods in crder to obtain greater extension of coronal streamers: (I) to use orthochromatic plates; (2) the greatest precaution to guard from all foreign light ; (3) short exposures to obtain the polar filaments and the inner corona; (4) long exposures to secure the extension of the outer corona ; (5) photographing each wing separately, and keeping the brighter part of the eclipse out of the field. Prof. Frank H. Bigelow gives a brief summary of the result of a discussion of a photograph of the corona streamers of the eclipse of July 29, 1878, according to the law of equipotential surfaces. He shows that the repulsion of the surfaces of infinitesimally small particles, obeying this law, is all that is required as a fundamental conception, in order to arrive at a physical interpretation of the facts. Lastly, Mr. Schaeberle gives a short account of the principles and resuits of the mechanical theory of the corona, to which reference has been made in a previous number (Nature, vol. xlii. p. 68). The fuli account of the investigation will appear in a report to be issued by the State Legislature. Beginning with the theorems, that (I) the eruptions on the sun's surface are most active and numerous in the sun-spot zones; (2) the sun rotates about an axis passing through its centre ; (3) this axis is inclined to the plane of the earh's orbit at an angle of about 823°, Mr. Schaeberle derives formulx which give results showing "that the observed shapes of the equatorial extension or wings of the corona can be satis. factorily accounted for by supposing them to be the envelopes of systems of streamers ejected from the sun-spot zones with initial yelocities of less than 380 miles per second (such velocities as have been observed in the higher regions of the prominences, for example)." He then shows on mechanical principies that the curious forms of the "polar rays," which are seen in any corona can be produced by the perspective overlapping of systems of nearly right line streamers originating within the sun-spot zones, and have therefore no objective existence. The résunné given by Mr. Schaeberle is a proof that he has thoroughly worked out his theory, and tested its capability of explaining the numerous coronal forms. We therefore look forward with interest to the publication of the Eclipse Report, containing the extended argument in favour of a theory which certainly rivals all others in simplicity.

The Photographic Chart:-A recently published Buletite du Comité international permanent pour l'exécution photo. graphique do la Carte du Ciel is distinguished by several interesting and important articles. M. Kapteyn and M. Gautier contribute notes on the construction and use of the apparatus for the measurement of the photographs, and Dr. Scheiner describes a simple method used at Potsdam for the exact orientation of the telescope. In a paper on the law of photographic diameters of stellar disks, Max Wolf compares the disks of Polaris and neighbouring sfars, and the group G.C. 44^{10}, obtained by exposures varying, in geometrical progression, from I to 1024 seconds, and deduces the conclusion that the increase
in diameter gets smaller and smaller as the exposure increment is augmented. M. Dunér discusses the vexed question of the retermination of the photographic magnitudes of stars by means of measures made on the negatives, and propounds the following definition :-" The relation between the light of two stars which differ from each other by a photographic magnitudie is expressed by the factor with which the time of exposure of a given plate must be multiplied or divided in order to render the diameter of the image of a star on the new cliche equal to the image of another star on the given cliche." A paper by M. Prosper Henry, on the value of atmospheric refraction for different portions of the spectrum, has previously been noticed (Nature, vol. xliij. p. 400).

Comet Bariard-Denning (a 1891).-Prof. Berberich gives the following elements in Astronomische Nachrichten, No. 3027, for the comet discovered by Mr. Barnard, of Lick Observatory, on March 29.695 , G.M.T. and by Mr. Denning at Bristol on March $30^{\circ} 417$ G.M.T.

Mean epoch $=1891$ April $27 \% 730$ Berlin mean time.
 Inclination $=120 \quad 30.52$
Peribelion distance $=0.40652$ earth's mean distance.
On the 88 th inst. the comet is in R.A. ih. 42 m . 9 s ., Decl. $+23^{\circ} 4 \mathrm{r}^{\prime} \cdot 6$, and is therefore not well situated for observation, although it is increasing in brightness.
The Planet Mercury.-At the present time the planet Mercury is in a position most favourable for observation, and will continue so until about the 25 th of this month. Appearing as an evening star, it will be found near the western horizon just after sunset, and those who have no optical weans at their disposal should look out for it at about 8 o'clock on the 19th or 20th of this month, when it will resemble a star of about the first magnitude, and will be a little to the westward of the Pleiades. Although the planet Mars is also situated near this region, the detection of Mercury can easily be made, by reason of its colour, which is of a far whiter hue than that of the firstmentioned planet. During the latter end of the present month and the first week of May the planet will be almost invisible, being lost in the rays of the sun, and its next appearance will take place as it transits the disk of the sun on the gth of the same month. At Greenwich the transit will only be partial, as the sun will rise at 16 h .19 m . (Greenwich mean time), so that only the internal and external contacts at egress can be observed.
For the benefit of those wishing to observe the planet during the present week, the following extract from the Nautical Almanac may be useful:-

Apparent R.A.
Noon.
Noon.
m. s.
April 16
", I7
$\ldots 2 \quad 2 \quad 50 \quad 1346$
$\begin{array}{lllll} & 18 & \cdots & 254 & 4275 \\ & \cdots & 58 & 52.66\end{array}$
$\begin{array}{rrrrrrrr}19 & \ldots & 3 & 42.52 & \ldots & 20 & 9 & 29.4\end{array}$

$"$,	20	\cdots	3	2	42	52	\cdots	20
	9	6	1174	$\cdots .4$				
	\cdots	\cdots	20	26	5.4			

$\begin{array}{llllllllll}" & 21 & \ldots & 3 & 9 & 19.79 & \ldots & 20 & 39 & 54.3 \\ , & 22 & \ldots & 3 & 12 & 6.27 & \ldots & 20 & 50 & 56.5\end{array}$
New Asteroid (3i8).-M. Borelly discovered the 308th asteroid on March 3 I.

THE WHEAT HARVEST IN RE゙LATION TO WEATHER.

T
HE general law of wheat production in England was stated in the Times of August $30,188 \mathrm{I}$, as follows: "The yield of wheat is proportional to the summer temperature, with the modifying conditions of rainfall, prevalence of cloud, character of the weather at blossoming time and during the harvest, and the state of growth at the commencement of the summer "; and it was added, "The growing influence of a high or low thermometer is established by the observations of many years." To test the law, superior and inferior harvests may be correlated with their summer temperatures and rainfall. For this purpose the meteorological records of the Royal Observatory, Greenwich, will be used. The mean temperature of June, July, and August, and the total rainfall for these months, will be taken for the summer.
1.-Superior Wheat Harvests.

Year.	Character.	Temperature.	Rainfall.
			inches.
1775	Plentiful	62%	?
1779	Plentiful	$62 \cdot 3$?
1791	Abundant	59.5	Dry
1818	Most abundant	64.3	1.4
1819	Fine	$60 \cdot 3$	$4^{6} 6$
1820	Productive	58.0	8.2
1825	Early and good	62%	$3 \cdot 3$
1826	Remarkably early and very great	$64^{\circ} \mathrm{O}$	5.1
1827	Good	60%	2.9
1833 (a)	Abundant	59.4	6.7
1834 (b)	Early, very productive	62.5	11.3
1835	Good	$62 \cdot 6$	4.5
1840	Fine yield	59.8	3.9
1849	Above the average	61.0	$3 \cdot 8$
1851	Above the average	$6 \mathrm{r}^{\circ} \mathrm{O}$	7.2
1854	Extremely good	59°	$5 \cdot 6$
1857	Above the average	$63 \cdot 9$	6.0
1858	A bove the average	$62^{\prime} 5$	57
1863	Abundant	$60 \cdot 3$	6.6
1864	Good	59.6	$2 \cdot 5$
1868	Productive	64.4	4 r
1874	Very good	$60^{\circ} 9$	64
1888 (c)	Above the average	58.4	13.8
	Mean	612	5.68
- II.--Inferior Wheat Harvests. __-			
Year.	Character.	Temperature.	Rainfall.
			inches,
1789	V Very deficient	59.7	Wet
1792	Inferior	58.3	Wet
1795	Very defective	57.8	?
1800	Iad	$60 \cdot 7$	Wet
1810	Scanty	60%	?
1811	Very scanty	59°	?
1812	Very defective	56%	
1816	Very great deficiency	55.2	8.4
1817	Deficient	57.4	79
1821	Inferior	57.8	$7{ }^{\circ}$
1823	Deficient	57.8	711
1828	Bad	$60 \cdot 3$	12%
1829	Inferior	59°	94
1838	Late, unproductive	59.1	7%
1839	Damaged	59.3	$7 \cdot 6$
184^{8}	Very bad	59.5	10.6
1852	Below the average	6 r 7	$1{ }^{1} 4$
1853	Bad	$60 \cdot 1$	110
1860	Very deficient	567	11.6
1867	Deficient	$59 \cdot 8$	10.2
1873 (d)	Very deficient	617	7.6
1875	Very unsatisfactory	$60 \cdot 3$	9.8
1876 (e)	Unsatisfactory	62.7	37
$1877(f)$	Unsatisfactory	62.	$6{ }^{\circ}$
1879	Worst known	58.5	13.3
1880	Deficient	60.6	71
188 I	Deficient	$6{ }^{\prime} 1$	79
1886 (g)	Deficient	61°	$4^{\text {² }}$
	Mean	59.4	8.6

(a) May was very dry.
(b) The winter was very mild; the spring very dry.
(c) The winter and early spring were very cold; May was very dry, with much sunshine.
(d) Frost occurred at blooming-time.
(c) and (f) The spring was cold.
(g) The winter and early spring were very cold; May was very wet.

