NOTES ON METEORITES.

VI

Comets are Meteor-Swarms which hate fntered the SOLAK SYSTEM SUME THE OR OTHER.

T- ILESE swarms, then, are comets. The final demonstration, as we have seen, we owe to the labours of Newton, Adams, and Schiaparelli chiefly. But long before their time the connection between shooting-stars (and even meteorites) and comets had been suspected on various grounds. ${ }^{2}$

Many shooting stars pass through the air with a trail. This, appearance is certainly suggestive of a very rapid comet. Hence, jerhaps, it was that such an appendage, often noticed in the case of bright meteors, was sometimes in ancient records described at a comet. It is known that Cardano described as a comet the great meteor from which fell 1200 stones on the teritory of Crema on September 4, 1511. ${ }^{3}$

Fot only, as we have seen, Kepler (1600) regarded shootingstars as akin in nature to meteorites, but he held that both ball the same origin as comets:-"Falling staris are compoed of inflammatory viscous materials. Some of them disappear during their fall, while others indeed fall to the earth, drawn by their own weight. Nor, indeed, is it improbable that they have been formed into globes from feculent materials mixed with the ethereal air itself, and thrown from the ethereal region in a straight line through the air like very small comets, the caluse of the motion of both being hidden. "t

Halley (17 CO) though he thought that the phenomenon of shooting stars ${ }^{3}$, was produced by a material disseminated through celestial space falling upon the sun and meeting the uarth in its passage, did not associate it with cometary phenomena; but Maskelyne (1765) held that meteors were of celestial origin, and was inclined to assimilate them to comets. He wrote as follows in a letter to the Abbe ('esaris, the a-tronomer at Milan, about December 12, 1783 :-"Frecly accept, I pray you, this map, which I have lately published in order to stir up learned men rather than the unlearned, to observe more keenly the phenomena called fire-balls. In all probability they will turn out to be comets. . . ."

To Chladni belongs the credit of having broached the theory which modern observations have established.

We have already seen that Chladni formulated the view, in 1794, that space is filled with matter. In 1819 he extended it by stating that both stooting-stars, meteotites, and comets were but different manifestations of it. ${ }^{7}$

Chladni made a step in this matter of which, as pointed out by Scbiaparelli, only to-day are we able to appreciate the importance. In suggestingr the cosmical hypothesis, he regarded two possible cases : either the meteors were formed of masses of independent materials which had never formed part of the larger celestial bodies, or they are the result of the destruction of a celestial body previously existing. Chladni held the second hypcthesis as possible. but held to the first as more probable. He stated that we could not doubt the existence in the celestial space of small bodies endowed with mosement, which are now and then visible by passing before the sun.

He held, therefore, that the small masses which appear under the forms of bolides and falling stars do not differ essentially from comets. It is also proballe, he says, that comets consist of clouds composed in gieat part of masses of vapour and dust, which are kept together by mutual attraction. That this attraction is not enough to sensibly disturb the planetary movements is a proof of the exceeding tenuity and dispersion of the materia!s in such clouds, through which, however large, it is possible, to observe the fixed stars.*

In 1839 the Abbe Raillard suggested a connection between luninous meteurs and comets and the aurora, ${ }^{y}$ and Dr. Forster

[^0]noted that the jears marked by the appearance of a large comet are remarkable also for the abundance of falling stars, especially of white ones.

Perhaps the first to give a more solid support to the cometary theory of falling stars on geometric grounds was Roguslawski, who conceived the idea of representing by means of parabolas the apparent orbits observed in some of the August meteors of $1837 .{ }^{2}$

For the next important advance in thought upon this subject we have to come duwn to 1858 , in which jear, Baron Keichenbach published a most important recmoir ${ }^{3}$ atlacking the question from an entirely new point of view. Reichenbach, accepting as proven by the then hrowlcdge the most intimate connection between meteorites and falling stars, reasoned in the following manner, that both were conrected with comets. He first recapitulated the facts then acceped with regard to comets :-
(1) Coasets, both taii and nucleus are transparent.
(2) Light is transmitted through comets with ut refraction; hence the cometary substance can be neither gascous nor liquid.
(3) The light is polarized, and therefore borrowed from the sun.
(4) Comets have no phases like those of moon and planets.
(5) They exercise no perturbing influences.
(6) I) onati's comet (which was then visible) in its details and its contour is changing every day-according io l'iazzi, almost hourly.
(7) The density of a comet is extremely small.
(S) The absolute mass is sometımes small (von Littrow having calculated very soall comets, tail and all, as scarcely reaching S pounds).

From these data the following conclusions might be drawn :-
(1) That a comet's tail nust consist of a swarm of extremely small but s : lid particles, therefore granules.
(2) That every granule is far away from its neighbour--in feet, sis far that a ray of light may have an uninterrupted course through the swarm.
(3) That these granules, suspended in space, move frecly and yicld to outer and inner agencies-agglomerate, condense, or expand ; that a comet's nuclens, where one is present, is nothing else than such an agglomeration of loose substances consisting of farticles.

Hence we must picture a emet as a loose, transparent, illamina:ed, free-moving swarm of small solid granules suspended in empty space.

The next step in Reichenbach's reasoning was to show that meteorites (of which he had a profound knowledge) were really composed of granules.

He pointed out that these granules (since called chondroi) formed really the characteri-tic structure both of irons and stones, so that both orders were chiefly aggregates of chondroi-stony ones in iron metentites, iron ones in stony meteorites.

In some irons, such as Zacatecas, they exist as big as walnuts, firmly adherent, but they can be separated; inside these are balls of troilite, oftenfirmly embedded, so that on breaking the meteorite they will divide, but in other cases so loose that they fall out, and they are smooth enough to roll off a table.

Sometimes chondroi have smaller ones sprinkled in them, sometimes dark chondroi have white earthy kernels.

In some cases these chondroi ate se plentiful as to form nearly the whole mass of the meteorite. They are often perfectly round, but not always, and they are often so loose that they tumble out and leave an empty smooth spherical cavity.

The stones chiefly consist of such chondroi and their debris.
He adds that each magnesic chondros " is an independent crystallized individual-it is a stranger in the metcorite. Fvery chondros was once a complete, independent, though minute meteorite. It is embedlied like a shell in limestone. Millions of years may have pasised between the formation of the spherule and its embeddal."

He then goes on to remark that the chondroi of meteorites indicate a condensation of innumerable bodies such as we see must exist in the case of comets; further, that they have been formed in a state of unrest and impact from all sides. Many meteorites are true breccias; they have mant time's sufferee' mechanical violence. He then shows that in comets we have precisely the conditions where such forces could operate, and

[^1]hence arrives at the view that "comets and meteorites may be nothing else but one and the same phenomenon." ${ }^{1}$

This was in 1858, eight years before Schiaparelli's discovery.
Newton, as we have seen, referred the comet of 1862 to the largest meteorite in the August swarm.
We may assume from the work which has already been done that Reichenbach's view is more probably the true one, and that the head of a comet is merely the denser part of the swarm. Whether that denser part is at the end or at the beginning of the long line to which reference has been made, it does not very much matter, but where that is there we shall have the appearance of a comet presented to us in the heavens. That being so, we are able to apply everything that we have learned about comets to the movements of meteorites in space; in the case of meteors and falling stars we were limited to what took place in our own air.

The Appeararce; presented by Comets away from the Sun.

When a comet first becomes visible, it appears in the telescope as a round misty body, and moves very slowly in consequence of its still great distance from the sun. At this time, too, its light is very feeble. Its appearance under these con-

FIg. I2.-A comet near aphelion.
ditions strikingly resembles that of a nebula, and in fact comets have often this been mistaken for nebula.

Occasionally the appearance put on is that of a planetary nebula in small telescopes and a globular one in larger ones.

Fig. i3.-The Pons-Brooks conet, January 13, 1834 (Thollon).
The globular form, after a time, gives way, and the concentration of light is now a star-like concentration at one end of an elliptic patch.
${ }^{x}$ For this analysis of a part of Reichenbach's memoir, I am indebted to my friend Mr. L. Fletcher, of the British Museum.

In the next phase, both the star-like object and the elliptic patch lengthen, and the appearance becomes more like what is ordinarily recognized as a comet.
As the comet approaches nearer the earth, so that observations of its several portions may be seen, we get a still greater differentiation of the phenomena.

F1G. 14.-The first keginnings of a tail.
Fig. 16, which is a representation of Donati's comet as it appeared in 1858, will serve to illustrate the main characteristics of comets. The brighter part is called the head or coma, and sometimes there is within this a still brighter and smaller portion called the nucleus. The tail is the dimmer part radiating from the head,

IIG 15-The lower portion represents the elongation of the star-like 15.-The lower portion represents the elongation of the star-ike
Iuminosity, the upper one, the conzom tant extens.on of the whole comet (Comet 1882 October 25, Seabroke).
and this varies greatly in different comets ; it may be long or short, straight or curved, s ngle, double, or multiple. The comet of 1744 had six tails, that of 1823 two. In others the tail is entirely absent. The tail of the comet of 186 r was $20,000,000$ miles in length, and that of the comet of 1843 was $112,000,000$ miles long.

Booh head and tail areso tran-parent that all but the faintest stars are easily seen throngh them. The star Arewrus was seen th:ough the tail of Uonati's comet in 1805 at a place where it was 90,000 miles in diancerer.

Is a comet approaches the sun its velucity, like that of the planets, increases, aud it gradualby gets hotter ard sives out more light.

When the comet gets sufficiently hot, aispettes or jets make their appeanace; these are socallid becane the; secm: to shoot

I ic. 16.-Lhonati's coms: (jeneral iew).
out from the nucleus like sparks shoo: out from a squib. The jets rapidly change their positions and cirection", and the tail is formed, apparenlly at the expense of the matler of which the head was in the first instance built up. The tail is always turned from the sun, whether the comet be approaching or receding.
I)rawings of a comet, as seen at difielent times, show how the jets vary in appearance and direction. Instead of jets, some comets present phenomena of a very different character, called envelopes, which are thrown off c ncentrically from the nucleus.

Fic. 17.-Comet with singie nucieus (Crui's come', 1882, Ricci),
These are among the chief physical peculiarities about the heads of comets; and we see at once that we have something perfectly distinct from the planets, and that some comets are at first sight difierent from others. The envelopes have been observed to rise from the nucleus with perfect and exquisite regularity in exactly the same way that the jets swing backwards and forwards.

The enormous effect produced by a near approach to the sun may be gathered from the fact that the comet of 1680 , at its
perihelion passage, while travelling at the rate of $\mathrm{I}, 200, \mathrm{CCO}$ miles an hour, in two days shot out a tail bo,cco,oco miles in length.

We must now enter somewhat more into details with regard to some of these cometary characteristics

First of all, it must be pointed out that the meteoritic swams

F:c. x $3 .-$ Nuche::s surrounde 1 by ellipsoidal head (Comet iSS2 Octoler 25, in Washington refractor).
are not always single, for in some comets the nuclei are double or triple.

In the case of single nuclei the nucleus may be the origin, and lie in the brighter region the extension of which forms the

Fic. 19.-Compound nucleus (samé comet November 5).
tail. But this is not invariable : the nucleus may be caught forming part of an elliptic head (Fig. I8) before any very great extension of the tail begins to take place, owing to reasons which will be stated further on.

Fiki. zu.-Conmander Sampson's sketch of the great comet, 2832 , ()ctober 10.

In the case of double or multiple ruciei we have a clear indication of the existence of more than one chief meteritic swarm, whether they be enveloped in the same atmosphere or give rise to the same tail (Fig. 19). But it would seem that, in
some cases, different nuclei may give rise to separate tails: such would seem a poisible explanation of Commander Sampson's olservation of the comet of 1882 (Fig. 20).
I. Nurman IGCKYER.
(Ti, lic continus:.)

THE ANVIVERSARY WEETTVG OF THE KOYAL SOCIETY.

THE anniversary mesting of the Royal Society was held on Friday lait, St. Andrew's Day. The President read the anniversary address-a copy of which has not yet reached us -and presented the medals. Frif. Huvley received the Copley Medal, and Mr. Crookes the Davy Medal in person. Prof. Osborne Reynolds was a'so present to receive one of the Royal Medals. The other Royal Medal was received on lechalf of Baron vol Mucller by Sir Cirahan Berry, Agent-(ieneral for Victoria, and the Kumford Medal, which had been awarded to Prof. Tacchini, was received on his behalf by the Chevalier Catalani, the Charme delfaires at the Italian Fmbasy. The Society next proceeded to elect the officers and Council for: the ensuing year. The selected names we have already pablished.

In the evening about 175 Fellows and guests dined wether at "Iillis's Rooms. Among the guests were eminent representative; of the Englith Gioverninent, of foreign nations, and of att and bite arure. Sir Frederick Lefighton, in proposing "The Royal Socicty." said :-
" A great honour is do te to me in intrating to my hands the toast which I have risen to propose, for it is the toast round which the chice sympathies of those who sit at this ta'sle are centred, be they hosts or be they guests-namely, proaperity to that ancient and honoured body, the Royal Society. It is, indeed, a toast favoured in this-that no inadequacy of presentment could rob it of your warm receplion, but it is onc, alio, which, in one sence, the indwndual now before you is ss little fitted to propose that 1 conld almo t suipoct yon, Sir, of a litule prompting of hum our in your selection. I do not mean becaise the bodies with which you and I have respectively the honour to be connected are now, in Piccadilly, as they were in furmer days in Somerset House, next-door neighbours, and because it is not habitually to one's next-door neigbbour that one looks in life for a kind words but on this other and more cogent ground-:hat the subject on which yoia bill mes spea's is one in regard :o which 1 an entirely ig orant, and that my attitude is therefore not free from ludicrons aspect, in the face of a b oly to which grasp and accuracy of knowledge is the ore thing nee lful, and precision of sta:ement the first duty of ma:t; and this, Sir, certainly no: least in the day of your heathip. And gee, on clocer view, it is not knowledyge, perhaps, that yo: require of the prop,siser of this toast so much as repereiful oympathy; and that you tint in me to the full. No, gentlemen, you do not demand in me knowledse beyond that of the average ignoramus who watche you in wonder as you so:nd with divining eyes the realms of the heavens above and of the earh beneath and of the water under the earth, an: 1 lay bare hefore us the very luat of the life-pulee of Nature. Hoa demant in me, I say, rather, sone symputhetic sense of your magnificent misions. some adhesion to the faith that you profess, and for these youd) not look to me in vain. It happens to me, Mr. I're-itent, fron time to time to have to acknowledine words of recognition of the sarvices of the great institution to which I am bound in a like capheity with your own ; and, knowing how earnestly that bosy is bent on the worthy discharge of an arduons task, such word, are dec; ${ }^{\prime}$ y grateful to $\mathrm{m}:$, but in every such case I see in my inner mind, behind and above the institution which I serve, the sweet and serene countenance of our divine mistress-of Art herself; and so, also, in offering this toast to the acela nation of your guests and to the acceptance of your flock, I am thinking less of the noble services of your renowned soriety, less of the many names, which are tis high ad remment at this time and our country's pride, than of your mistress beneficent and supreme, the seatterer of darknessscience. All of us walk in the daylight of her illumination, the humblest layman can weat witness to her, aim the mont ignorant concerning the pathe she treats may yet not unbecomingly declare his gratitude to her ministers, and expresi, as I now capress, the hope that they and their sacce, wors may in the lond of this constituted brotherhood long continue to tend the flame and feed the increasing splendeur of her sacred in axtinguishable 1.mp."

The President of the Royal Society responded in a short speech, in which be compared the Royal Siciety to a wave of light moving onward through space, conveying intelliyence from one portio:s of the universe to another fardistant portion. The molecules which it set in motion had but a brief existence, but the wave moved ever onwari.

SCIENTIFIC SERIALS.

TuE fournal of botan is atill largely occupied with the dis cussion of points connected with botanical nomenchature, in which Einglish, A merican, and Genevan botanistatake part. The October number contains also a description of a new genus of Serberidacer hy the Japanese botanist Tokutato Ito. -In the November number are papers on the genus "arex, by Mr. I.. II Bailey; on Ferns from West Borneo, by Mr. I. (i. Biaker; on South Werbyshice plants, by Rev. W. R. Linton : and on the Demmidis of Maine, by Mr. W. West. Mr. W. H. Beeby record; the interesting fact that of the two very nearly allie 1 s ecies of valerian, Vidieriana .Mikanii and sambucifolia, one is very attractive to cats, while to the other they are quite indifferent.

IN the Pohmial Gazitte for Septemler, Mr. C. Roberison completes his essay on zygomorphy and its causes, cumming up the rewults of his observations. The remainder of the number is larsely nocupied by abstracts of botanical paper. read at the Cleveland mecting of the American Association for the . Irvancement of science. -In the October number are two important anatomical pupers, by Miss Finily L. Gregory on the develop. ment of cork-wings on certain trees, and an illustrated one by Mr. W. II. Evans on the stem of Epheira, Mr. (i. Vavey contributes an interesting article on the characteristic vesetation of the Narth American desert.
'luse number of the Nuivi, Giornalt Fotanico Ctationo for October ISSS is entirely nccupied hy reports of the papers reat before the annual mecting of the Botanical Socicty of fialy held at Florence in September, many of which are of considerable interet.-hig. C. Massolonge descrites the germination of the spres of three new species of Spheropsider-liopursti, it
 maintain that the only difference between pyenidia and spermosonia is that the sporules (stylopores) contaned in the former are canable of germinating directly, while those formed in the latter ispermatia! have no stach power.--Sig. Berlese addis to the very mumeroms fungsparatites of the vine two new
 Berk.-Sig. 1i. Gasperini has investigated the nature of the organism : which bring about the fermentation of the palan-wine known to the Arabs ander the name of "/eribi." Ile finds it to be due to. Sacharampices ciriatia, which is always accom. pameal by biacillus subtilis. On the surface is also commonly
 describes a new epecies and genus of A scomycetes- E rom. tarium Cymªlurat, found on half ripe capsules of limaria (1, mataria. - The little-known germination of the seeds of the waterlily, Eurale forox, is described by Sig. (i. Arcangeli, the chisf peculiarity being the almost entire suppres-ion of the clongation of the vaticle.- Prof. I. Macchati claims to have disebvered an entirely new substance, which he calls x tathth. ptri!idrin, as a constituent of the green colo:ring-matter of plant: It is erystallizable, and allogether distinct from xanthophyll and fro:n the pigment of yellow petals. - l'rof. A. lanai describes the mote in which xerotrontim displays itself in some fernsColirach officinarmm, Votechana ihisiantio. Asplenium Trimo. mathis, and several species of Cheituntines: understanding by thi term the mechanical contrivances by which an organ protecis itielf against excessive desiccation.

SOCIETIES AND ACADEMIES.
 Lonnon.

Royal Society, November 22.-"The Ware; on a rotaling liquid Spheroid of finite Filipticity." By (i. H. Bryan, 13.i. Commonicated by Prof. G. Il. Darwi:.

The hydrodynamical problem of finding the waves or ocilla. tions on a gravitating mais of liquid which when undisturbed is rotating as if rigid with finite angular velacity in the form of an ellipeod or spheroid, was first stacesefully attacked hy M. Puincare in 1885.

[^0]: ${ }^{1}$ Continued from vol. $x \times x$ viii. p. fois.
 Fur many references in what follows 1 am indebed to the historical m. tice in Sch.aparell's "Sicele Cadente."
 ${ }^{3}$ Humbeldt, " Cosmos", iv. p. 537 (Utté). (ardani, "Operat" J.usdami,

 ${ }_{5}$ K.pler, "Opera," ed trixch, vol. vi p. tis7.
 5 Coulver-(iravier et Sargey, \cdots Introd, Hi-toriqu ${ }^{\circ}$ "p. 5 .

 : "Ueber F cuermeteure, und ueber die mit denselven heralgefaltene:1 Massen" (Wie:, r81), , Sce also "Ceber den L'roprung der von Pallis gefundenen Fi.senama, sen," p. 24.
 8 "Feuerneteure," p. अу5; ; sec Kaemt/, "Meteor,skie," sul. ii. p. 316.
 ${ }^{2}$ Lis Monde's, t. xii. p tyds, et t. xiii. P. ©. 5.

[^1]:
 a J'sisctirn's. In.malu, vol. w. I. $4 j$.

