

GEOGRAPHICAL NOTES.

The Geographical Society of Paris have decided to avail themselves of the Universal Exhibition at Paris, next year, by convening an International Congress of the Geographical Sciences, to meet in the month of August. There will be two classes of members, subscribing respectively 40 and 20 francs, and each member will be entitled to receive a copy of the publications of the Congress and have a vote in the questions discussed at the meetings. Each Society represented at the Congress will be invited to submit a report on the voyages, explorations, and publications which have most contributed, in the country to which it belongs, to the progress of geography during the past hundred years; the combined reports will afterwards be published with the names of their authors.

Dr. H. Meyer has made some important corrections in the preliminary account of his ascent of Kilimanjaro. After verifying and correcting his barometrical observations, he admits that the previously accepted height of 18,700 feet is more accurate than that given. by himself, 19,850 feet. He then refers to the dense mist which prevented him from seeing beyond a wall of inaccessible ice, 130 feet high, which his first account indicated as being the terminal point of the peak. It results from these observations that Dr. Mcyer did not reach to within 820 feet of the summit of Kilimanjaro, which therefore still remains unconquered.
M. Jules Borelli, the French traveller, who accompanied M. Rimbaud last year in his interesting journey from Anotto to Harar, is-engaged in exploring the country to the south-west of Shoa. The I'aris Geographical Society has received some of the results accruing from his journey from Antotto to Jiren, which is situated in $7^{\circ} 42^{\prime} \mathrm{N}$. latitude, and $34^{\circ} 35^{\prime}$ E. longitude. Among these resuits is the discovery of the sources of the River Hawash, which lie at the foot of Mount Ilfata at the extremity of the Meca range, and not near Mount Dandi, as hitherto supposed. On the :ummit of the latter peak the traveller found a double lake resembling in shape the figure 8 , which is of considerable extent and depth ; an affluent of the Gudar, and thus of the Abbay, issues from this lake. He also discovered a deep lake at the bottom of the immense crater mountain known as Mount Harro; the surroundings of this sheet of water are described by the traveller as of incomparable beauty. From this lake, which is named by the natives Wancit, a stream issues and joins the Walga, the source of the latter river being in the summit of Mount Harro. Dr. Traversi, the Italian explorer, made in

June, 1887, an excursion into the mountainous region of Urbanagh, lying to the east of the district now being explored by M. Borelli. The chief result of this journey of 1)r. Traversi is to throw light on the probiem of the hydrographical systems of the Somali and Galla countries. From the summit of Mount Gafat he was able to comfirm his previous observations made near the Suai Lake, with reference to the three lakes abovementioned and their interconnection.

ON CERTAIN INEQUALITIES RELATING TO PKIME NUMBERS.

[SHALL begin with a method of proving that the number of prime numbers is infinite which is not new, but which it is worth while to recall as an introduction to a similar method, by series, which will subsequently be employed in order to prove that the number of primes of the form 4^{n+3}, as also of the form $6 n+5$, is infinite.
It is obvious that the reciprocal of the product

$$
\left(\mathrm{I}-\begin{array}{c}
\mathrm{I} \\
p_{1}
\end{array}\right)\left(\mathrm{I}-\frac{\mathrm{I}}{\mathrm{p}_{2}}\right)\left(\mathrm{I}-\frac{\mathrm{I}}{p_{3}}\right) \cdots\left(\mathrm{I}-\frac{\mathrm{I}}{p_{\mathrm{N}, p}}\right)
$$

(where p_{i} means the i th in the natural succession of primes, and $p_{\mathrm{N}, \mathrm{p}}$ means the highest prime number not excecding N$)^{1}$ will be equal to

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\ldots+\frac{I}{N}+R
$$

and therefore greater than $\log \mathrm{N}$ (R consisting exclusively of positive terms).

Hence

$$
\left(\mathrm{I}+\frac{\mathbf{I}}{p_{1}}\right)\left(\mathrm{I}+\frac{\mathrm{I}}{p_{2}}\right) \cdot\left(\mathrm{I}+\frac{\mathrm{I}}{p_{\mathrm{N}, \mathrm{p}}}-\right)>\mathrm{M} \log \mathrm{~N},
$$

where

$$
\mathbf{M}=\left(\mathbf{I}-\frac{\mathrm{I}}{p_{1}^{2}}\right)\left(\mathrm{I}-\frac{\mathrm{I}}{p_{2}^{2}}\right) \cdot \cdot \cdot\left(\mathbf{I}-\frac{\mathbf{I}}{p_{\mathrm{N} \cdot p}^{2}}\right),
$$

and is therefore greater than $\frac{2}{\pi}$.
Hence the number of terms in the product must increase indefinitely with N .

By taking the logarithms of both sides we obtain the inequality

$$
S_{3}-\frac{1}{2} S_{2}+\frac{1}{8} S_{3}-\frac{1}{4} S_{4}+\ldots .>\log \log N
$$

where in general S_{i} means the sum of inverse i ih powers of all the primes not exceeding N; and accordingly is finite, except when $i=1$, for any value of \mathcal{N}. We have theiefore

$$
\mathrm{S}_{1}>\log \log \mathrm{N}+\text { Const. }
$$

The actual value of S_{1} is observed to differ only by a limited quantity from the second logarithm of N, but I am not aware whether this has ever been strictly proved.

Legendre has found that for large values of N

$$
\begin{aligned}
& \left(\mathrm{I}-\frac{1}{3}\right)\left(\mathrm{I}-\frac{1}{3}\right) \cdots\left(\mathrm{I}-\frac{\mathrm{I}}{p_{\mathrm{N} . \mathrm{p}}}\right)=\frac{\mathrm{I} \mathrm{IO}}{\log \mathrm{~N}} . \\
& \text { Consequently } \\
& \left(\mathrm{I}-\frac{\mathrm{I}}{p_{1}}\right)\left(\mathrm{I}-\frac{\mathrm{I}}{p_{2}}\right) \cdot . .\left(\mathrm{I}-\mathrm{I}_{\mathrm{N}, p}\right)=\frac{\cdot 55^{2}}{\log \mathrm{~N}^{2}} .
\end{aligned}
$$

This would show that the valite of our R bears a finite ratio to $\log \mathrm{N}$; calling it $\theta \log \mathrm{N}$ we obtain, according to Legendre's formula,

$$
\frac{\mathrm{I}}{\mathrm{I}+\theta}=552, \text { which gives } \theta=8 \mathrm{Ir}
$$

so that the nebulous matter, so to say, in the expansion of the reciprocal of the product of the differences between unity and the reciprocals of all the primes not exceeding a given number, stands in the relation of about 4 to 5 to the condensed portion consisting of the reciprocals of the natural numbers.

I will now proceed to establish similar inequalities relating to prime numbers of the respective forms $4 n+3$ and $6 n+5$.

Beginning with the case $4^{n}+3$, I shall use η_{j} to signify the j th in the natural succession of primes of the foim $4^{n}+3$, and $q_{\mathrm{N} . q}$ to signify the highest q not exceeding N, N. q itself signifying the number of q 's not exceeding N .
${ }^{x} \mathrm{~N} p$ itself of course denotes in the above notation the number of primes.
p) not exceeding N . (p) not exceeding N .

