Union Pacific railroads, the Pullman Palace-Car Company, and the American and Union Pacific Express companies made the most liberal arrangements, and Mr. Galbraith, the superintendent of the Repair Works at Rawlins, gave us the free use of his private house and grounds. Of the citizens of Rawlins it is only necessary to say that we never even put the lock on the door of the observatory, and not a thing was disturbed or misplaced during our ten days' residence, though we had many visitors. They sent us away with a serenade.

Henry Draper

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible far opinions expressed by his correspondents. Neither can he undertake to return, or to correspond with the writers of rejected manuscripts. No notice is taken of anonymous communications.
$\$$ The Editor urgently requests correspondents to keep their letters as stopt as possible. The pressure on his space is so great that it is impossible otherveise to ensure the appearance even of comi. munications containing interesting and novel facts.]

Floating of Solid on Molten Metal

I observe in Nature (vol. xviii. p. 397) a note of some experiments on this subject. The results of these experiments (unless with lead) are, I think, very similar to some which I have made, and described in your pages (see Nature, vol. xvi. p. 23), viz, that with kequy pieces. the metal first sank and then rose to surface; with light pieces the "skin" formed on the siurface of the ladle was sufficient to keep thera afloat. From these experiments I drew the conclusion that the cold solid metal was specifically heavier than the molten metal, but after a short immersion, depending on size of pieces, these pieces had expanded by the great heat around them so as to have their bulk increased sufficiently to enable them to float. My experiments with solid pieces of lead showed that they sank and did not come to the surface, and could be felt lying at bottom. Pieces of sheet lead rolled up floated.
In some recent experiments which I made, I found that coll pieces of steel rails placed in a furnace of molten steel sunk at first and floated afterwards, but that hot pieces floated, and did not șink.
Ioo, Wellington Street, Glasgow, August ro

A Meteorite?

This dey, at I2.15 P. M., I was considerably startled by what was to me a remarkable phenomenon. The weather had been very "thundery" all the morning, and heavy rain was falling in torrents. I sat at my desk by a window looking out upon a court inclosed by high walls. Chancing to look ont of the window I heard a sharp report, just like the crack of a Snider rifle sounding immediately cutside, followed instantaneously by the descent of a ball of fire about the size of an ordinary gaslamp globe. This fell vertically and with lightning speed, but when just on a line with the centre of my window burst into a splendid mass of rays, whitish-blue in coloar, and of dazzling brilliancy. That is all I can tell you about it. Every one in the house heard the report, and quite a temporary panic ensued. No material effect of the meteorite's presence can be found.
Perhaps some of your readers may be able to explain the phenomenon.
67, Chandos Street, Strand, August 23

The Australian Monotremes

The Tachyslossus was shot by me near Georgetown, in lat. $18^{\circ} \mathrm{S}$. I have found it inhabiting the porphyritic ranges (Newcastle and Mount Turner) in this locality, where they are rather. numerous. In my letter (NaTURE, vol. xvi. p. 420) I should have written "integumentary" pouch. The Orinthoshynchus paradoxus I saw floating with its bill above water in a lagoon between Georgetowi and Normanton, 150 miles west of the former town.
Owing to the noise made by my detachment in riding up, I was unable to capture this specimen, but I do not despair of securing one on my next trip we:tworl. I certainly believe the

Tachyslossus extends throughout the length of the Cape York peninsula on the east, and through the Gregory, Leichhardt, and Cloncurry ranges to the southward and south-westward of Georgetown. Its habit of burrowing beneath rocks precludes the possibility of its occurrence on the Lower Gilbert and Flinders River plains.
"P. L.S." will find my "notes" on this subject in the Linnean Society's Fournal, as I sent them, accompanied by the skull of an adult feinale, to the Society in March last

Georgetown, June I
W. E. A. |

Microphone in Indirect Circuit

IT is not absolutely necessary that the microphone should form part of the direct circuit. It works just as well if connected so that, when the carbons are not touching, the whole of the current goes through the telephone: When the carbons are together a small portion will of course leak thitough them; upon this leakage depends the rise and fall of tension in the receiver. For some experiments it is even better to work the microphone in this indirect manner, as the circuit always remains closed, and prevents, in a great measure, the jarrintor noise resulting from a break.

Alfred Chiddey
Bristol Mining School, August 19

OUR ASTRONOMICAL COLUMN

The Satellite of Neptune.-We here present in a tabular form the means of determining the approximate position and distance of the satellite of Neptune, with respect to the primary for any time during the months of September and October, or indeed by extending the epochs subjoined, for any time during the present opposition. The argument u is the distance of the satellite from the ascending node of the orbit upon the earth's equator, and $u=\circ^{\circ}$, at these Greenwich mean times :-

The motion of u in one day is $61^{\circ} \cdot 257$, in one hour $2^{\circ} .552$, and in one minute $0^{\circ} \circ 425$. Having determined the value of u from these epochs and motions for the proposed time of observation, the angle of position and distance of the satellite from the centre of the planet may be taken from the following table, in which the first and second columns of angles apply to the respective columns of the argument u :

Arg. 26.	$\begin{aligned} & \text { A } \\ & \text { P } \end{aligned}$		Distance.	Arg. $\%$.	$\begin{aligned} & \mathrm{A} \\ & \mathrm{p} C \end{aligned}$	of	Distance.
$\circ \quad 180$	$7 i \cdot 6$	$2{ }^{\circ} \mathrm{I} \cdot 6$	$9^{\prime \prime} 8$	9020	29.8	209.8	
10190	63.1	$243{ }^{\circ} \mathrm{I}$	II'7	$\begin{array}{ll}100 & 280\end{array}$	$25^{\circ} \mathrm{O}$	205°	13.6
20200	56.9	$236{ }^{\circ} 9$	135	IIO 290	18:9	198.9	H.8
30,210	$52: 0$	232%	14.9	120300	10.6	$190 \cdot 6$	9 9
40.220	$48 \cdot 0$	$228{ }^{\circ}$	16.0	130310	$358 \cdot 2$	178.2	$8 \cdot 0$
50.230	$44^{\circ} 3$	$224{ }^{\circ} 3$	16.7	140320	$338 \cdot 9$	158.9	$6 \cdot 4$
60.240	$40^{\circ} 9$	$220{ }^{\circ} 9$	1700	150330	3117	131%	58
$70 \quad 250$	37.5	217.5	16.8	160,340	$284^{\circ} 2$	$10_{4}{ }^{\circ}$	$6 \cdot 4$
80260.	$33 \cdot 8$	213.8	16.1	170 350	$264^{\circ} 4$	84.4	79
$90 \cdot 270$	$29^{\circ} 8$	$209 \cdot 8$	15°	I 80,360	251.6	$71 \cdot 6$	9.8

The period of revolution of the satellite is 5 d .21 h .274 m ., and by successive additions of this period the epochs may be continued for November or later.

As an example of the application of the table, suppose it is desired to know the approximate position of the satellite on September I4 at Greenwich midnight. Strictly the time for aberration should be deducted, which, in minutes, is given by [0.9189$] \times$ log. distance of Neptune from the earth-this log. distance being taken from p. 269 of the Nautical Almanac. In the present case we find 4 h . I 9 m . to be deducted from izh., so that

