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Floating body effect 
in indium–gallium–zinc–oxide 
(IGZO) thin‑film transistor (TFT)
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Hyungju Noh 2, Seonggeun Kim 2, Byung Du Ahn 3, In‑Tak Cho 3, Pil Sang Yun 3, Jong Uk Bae 3, 
Yoo Seok Park 3, Sangwan Kim 2* & Dae Hwan Kim 1*

In this paper, the floating body effect (FBE) in indium‑gallium‑zinc‑oxide (IGZO) thin‑film transistor 
(TFT) and the mechanism of device failure caused by that are reported for the first time. If the toggle 
AC pulses are applied to the gate and drain simultaneously for the switching operation, the drain 
current of IGZO TFT increases dramatically and cannot show the on/off switching characteristics. This 
phenomenon was not reported before, and our study reveals that the main cause is the formation 
of a conductive path between the source and drain: short failure. It is attributed in part to the donor 
creation at the drain region during the high voltage (Vhigh) condition and in part to the donor creation 
at the source region during the falling edge and low voltage (Vlow) conditions. Donor creation is 
attributed to the peroxide formation in the IGZO layer induced by the electrons under the high lateral 
field. Because the donor creation features positive charges, it lowers the threshold voltage of IGZO 
TFT. In detail, during the Vhigh condition, the donor creation is generated by accumulated electrons 
with a high lateral field at the drain region. On the other hand, the floating electrons remaining at the 
short falling edge (i.e., FBE of the IGZO TFT) are affected by the high lateral field at the source region 
during the Vlow condition. As a result, the donor creation is generated at the source region. Therefore, 
the short failure occurs because the donor creations are generated and expanded to channel from the 
drain and source region as the AC stress accumulates. In summary, the FBE in IGZO TFT is reported, 
and its effect on the electrical characteristics of IGZO TFT (i.e., the short failure) is rigorously analyzed 
for the first time.

An amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistor (TFT) has been widely used in the field of 
high-performance display and complementary metal–oxide–semiconductor (CMOS) back-end-of-line (BEOL) 
circuits due to its high mobility (> 10  cm2/V s), ultra-low leakage current, large on/off current ratio, large-area 
uniformity, low cost and low-temperature  process1–7. Despite these advantages, the IGZO TFT has suffered from 
several technical issues, such as the development of p-type  semiconductor8, bias instability (i.e., DC and AC 
stresses)9–16 and reliability problems related to the oxygen  vacancy17,18, excessive  oxygen19,20, and metal  cation21. 
Therefore, many research groups have been studied for the reliability of IGZO  TFT8–21.

In this study, the floating body effect (FBE) in IGZO TFT and device failure due to FBE are reported for the 
first time. In addition, the mechanism and physics are compared with the FBE in silicon-on-insulator (SOI) 
metal–oxide–semiconductor field-effect transistor (MOSFET)22–24. In the case of n-channel SOI MOSFET, the 
electron–hole pairs (EHPs) are generated by impact ionization as the high electric field is induced at channel-
drain junction during the saturation mode [i.e., the high gate voltage (VGS) and drain voltage (VDS)]. The electrons 
can move toward the drain electrode while the holes are accumulated at the floating body. The accumulated 
holes increase the body potential, which lowers the threshold voltage (Vth) and increases the drain current (ID). 
Therefore, the stored holes at the floating body cause the degradation of the device and/or circuit reliability, such 
as the history effect, propagation delay, and so  on22–27.

On the other hand, it is well known that FBE rarely occurs in the IGZO TFT because it features intrinsic 
n-type and low impact ionization generation rate due to a large bandgap (Eg > 3 eV)28–30. However, the IGZO 
TFT is mainly used for the gate driver in display applications, which requires a higher supply voltage than CMOS 
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logic. Furthermore, it is vulnerable to FBE regarding circuit topology because the driver usually uses a gated-
diode structure (i.e., synchronized gate and drain)31–34.

In this study, the FBE in IGZO TFT, which occurs when the AC pulse is applied for gated-diode operation, is 
reported for the first time, and the mechanism is analyzed. This paper is organized as follows. First, the fabricated 
device structure and measurement method are explained. Next, the electrical characteristics of IGZO TFTs are 
demonstrated, and their degradation mechanism due to FBE is proposed. After the mechanism is examined by 
the technology computer-aided design (TCAD) simulation, the FBE in IGZO TFT is compared with that in SOI 
MOSFET for precise analysis.

Device fabrication and measurement method
Figure 1a shows the schematic of the IGZO TFT with a self-aligned top gate structure. The channel length and 
width were 6 and 250 µm, respectively. After depositing a 300 nm-thick  SiO2 buffer layer on the glass substrate 
by using plasma-enhanced chemical vapor deposition (PECVD), a 30 nm-thick amorphous IGZO channel 
(In:Ga:Zn = 1:1:1 mol%) was deposited by DC sputtering. The 150 nm-thick  SiO2 gate oxide and Cu/MoTi gate 
were deposited by PECVD and DC sputtering, respectively. After gate patterning, the plasma treatment was 
performed for the highly conductive source/drain  region35. Subsequently, the interlayer dielectric (ILD) was 
deposited and patterned for the source/drain region. The source/drain electrodes were formed by Cu/MoTi.

The gated diode (i.e., synchronized gate and drain) IGZO TFT is usually used as a switching device in the 
gate driver circuit and transmits the image signal to the pixel circuit. Therefore, the electrical characteristics were 
investigated after applying toggle pulses to examine the switching application. As shown in Fig. 1b, the switching 
pulses were composed of 12.7 V-high voltage (Vhigh) and − 30 V-low voltage (Vlow) and applied to the gate and 
drain simultaneously (Fig. 1a). In addition, the pulse was set to 16.6% duty cycle with 30 ms period (i.e., the 
pulse with 5 ms of Vhigh and 25 ms of Vlow) and 100 ns of rising/falling time.

Results and discussion
Electrical characteristics and degradation mechanism of IGZO TFT with AC pulse
Figure 2a shows the drain current (ID) under the AC pulse stress in Fig. 1b. Because a period of pulse is 30 ms, 
the stress time 20 s (t1), 40 s (t2), and 60 s (t3) are corresponded to 666, 1333, and 2000 pulse stress, respectively. 
As the stress time increases, the ID increases gradually. It is attributed to the decrease of Vth (Fig. 2b). Generally, 
these phenomena can be explained by the donor creation at the channel adjacent to the drain  region11,12,36. The 
origin of donor creation in IGZO is well known as the formation of peroxide (i.e.,  O2− +  O2− →  O2

2− +  2e−) when 
the strong electric field is applied to the large amount of  electrons19,20. In detail, if the IGZO TFT is fully turned 
on (i.e., strong accumulation at VGS = Vhigh) and large VDS is applied, the high lateral electric field is applied at the 
channel-drain junction with high electron concentration at the channel. It can be confirmed that the extracted 
subgap density-of-state (DOS) [g(e)] increases after stress, corresponding to the generation of donor creation, as 
shown in Figure S1. As a result, there are donor creations, and the increment of carrier concentration lowers Vth.

The interesting point is that the ID rapidly increases to the compliance current after 45 s (Fig. 2a) and cannot 
show on/off switching characteristics (Fig. 2b, t3). The detailed images for the short failure are described in the 
supplementary information (including Figure S2). It is analyzed by the short failure between the source and drain, 
not the gate leakage current (Figure S3). However, the short failure cannot be explained by the abovementioned 
donor creation because it is locally generated at the channel adjacent to the drain. In addition, the degradation 
is affected by the amplitude of Vlow, as shown in Fig. 2a, c, and d. In detail, the short failure occurs after 45 s and 
200 s with − 30 V and − 20 V-Vlow, respectively, while there is no failure with − 10 V-Vlow until 500 s stress time. 
In other words, the required number of stress pulses (i.e., the stress time) is increased with the smaller Vlow. 
However, the result cannot be explained by the donor creation at the drain region because the electric field at the 
drain is rarely affected by the amplitude of Vlow. Therefore, a novel degradation mechanism is needed to explain 
these phenomena: short failure and its dependence on Vlow.

Figure 1.  Schematics of (a) IGZO TFT and (b) synchronized gate and drain AC pulse.
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Our group hypothesizes that there are different degradation mechanisms depending on the segment of AC 
pulse applied to the gate and drain simultaneously (Fig. 3). First, in the case of Vhigh (Fig. 3a), the electrons at 
the channel are affected by a high lateral electric field, especially around the drain region due to the large VDS. 
As a result, the donor creation occurs at the drain region, as discussed before. Second, a number of accumulated 
electrons remains without recombination during the 100 ns falling edge (i.e., the transition from Vhigh to Vlow) 
because the lifetime of electrons in IGZO is ~ μs37–39. At the same time, the electric field at the source is signifi-
cantly increased when the applied voltage decreases from 0 V to Vlow. As a result, the donor creation occurs at 
the source region since the remaining electrons at the floating body are affected by the strong lateral electric field 
at the source region. This phenomenon (i.e., the donor creation at the source during the falling edge) is defined 
as the FBE in IGZO TFT and analyzed in detail (will be discussed later). Third, in the Vlow condition (Fig. 3c), 
although the lateral electric field is high enough, there is no donor creation because most of the electrons are 
recombined. Similarly, there are not enough electrons during the rising edge (i.e., the transition from Vlow to 
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Figure 2.  (a) Transient response of drain current (ID) under the AC stress shown in Fig. 1b (i.e., Vhigh = 12.7 V 
and Vlow = − 30 V). Here, the high level and low level current are measured during Vhigh and Vlow, respectively. (b) 
Transfer curves before and after AC stress pulses are applied to the IGZO TFT. Transient response of ID under 
the AC stress with the different Vlow from (a); (c) Vlow = − 20 V and (d) Vlow = − 10 V.

Figure 3.  Degradation mechanism of IGZO TFT during AC pulse stress under (a) Vhigh, (b) falling edge, (c) 
Vlow, and (d) rising edge conditions.
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Vhigh) for the donor creation (Fig. 3d). In summary, if the gated-diode operation is repeated (i.e., synchronized 
AC pulses are applied to the gate and drain repeatedly), the donor creation occurs at the drain during the Vhigh 
condition due to the accumulated electrons. In contrast, the FBE-induced donor creation occurs at the source 
during the falling edge due to the floating electrons.

Figure 4 shows the short failure steps in IGZO TFT (Fig. 2b, t3) according to the number of the applied AC 
pulses. As mentioned above, the donor creation is generated at the drain and source during Vhigh (Fig. 3a) and 
falling edge (Fig. 3b), respectively. Moreover, the donor creation is accumulated as the number of AC pulses 
increases. In the early stage of stress (Fig. 4b), the Vth is decreased due to the increase of channel potential (Fig. 2b, 
t1). As the number of applied pulses increases, the donor creation region gradually expands from the drain and 
source to the channel, resulting in a decrease in the effective channel length (Fig. 4c). Finally, as shown in Fig. 4d, 
the donor creation occurs in most channel regions. It results in short failure (channel cannot be OFF despite 
Vlow), and the switching application of IGZO TFT is impossible (Fig. 2a and b, t4). It is clear that the phenomena, 
which cannot be explained by the donor creation at the drain region, can be well explained by the proposed 
FBE-induced donor creation (for evidence of the generation of the donor creation at the drain/source region and 
the short failure, see the Supplementary Information, Figure S4). The critical point of the proposed degradation 
mechanism is that the electrons cannot be recombined during the falling edge (i.e., the FBE in IGZO TFT).

TCAD simulation of the FBE in IGZO TFT
The mixed-mode TCAD simulation is performed to verify the proposed degradation mechanism, the FBE in 
IGZO TFT. The parameter of DOS is extracted and adapted to the IGZO layer for precise simulation (Table S1). 
More details about the TCAD simulation are described in the supplementary. The AC pulse is set as in Fig. 5a, 
and the distribution of electron concentration and electric field along the channel are extracted at Vhigh, Vlow, 
falling, and rising edges. The falling and rising edges are defined when the AC pulse is − 4 V as shown in the gray 
dot line in Fig. 5a. As shown in Fig. 5b, the electron concentration at the falling edge and at the rising edge, the 
former is much larger than the latter. In other words, it is confirmed a large number of floating electrons remain 
without recombination during the falling edge. At the same time, Fig. 5c shows the electric field at the source 
region is significant in order of the Vlow, falling/rising edges, and Vhigh. As a result, during the falling edge, the 
floating electrons at the channel are affected by the high lateral electric field, generating the donor creation at 
the channel adjacent to the source region. Furthermore, the inset of Fig. 5c shows that the electric field decreases 
as the Vlow lowers, which is well corresponds to the tendency of short failure with the various amplitudes of the 
Vlow (Fig. 2a,c, and d). In conclusion, the short failure in IGZO TFT is attributed in part to the donor creation 
at the drain region during Vhigh and in part to the FBE-induced donor creation at the source region during the 
falling edge.

Figure 4.  Schematic of short fail mechanism during ac stress with (a) initial condition and after (b) t1, (c) t2, 
and (d) t3 in Fig. 2a.
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Comparison between the FBEs in IGZO TFT and SOI MOSFET
In this section, the FBEs in IGZO TFT and SOI MOSFET are compared for precise analysis. Figure 6a shows the 
schematics of VGS, VDS, ID, and electron concentration of IGZO TFT with the initial and subsequent AC pulses. 
As discussed in the previous section, the FBE-induced donor creation can be generated if the high lateral elec-
tric field is applied to the floating electrons, which are generated at VGS = VDS = Vhigh and cannot be recombined 
during the falling edge because their lifetime is more prolonged than Vhigh to Vlow transition time (Fig. 6b; FBE 
in IGZO TFT). Therefore, the transient time from Vhigh to Vlow at the falling edge and the amplitude of the Vlow 
(i.e., lateral electric field) are the most significant factors for FBE in IGZO TFT. In the case of short tf (green 
line), there is donor creation because the floating electrons are affected by the high lateral electric field (Fig. 6c). 
The donor creation makes Vth decrease (Fig. 2b), and hence, the ID during the following pulse is more significant 
than that for the initial pulse. As a result, more floating electrons are generated/accumulated in the channel, and 
FBE is accelerated. On the contrary, if the falling edge time (tf) is longer than the electron lifetime (indigo line, 
Fig. 6d), the FBE-induced donor creation cannot be generated because most of the electrons are recombined, 
and hence, there are not enough electrons when the source lateral electric field is increased (i.e., VGS and VDS 
change from 0 V to Vlow; tf,low). Therefore, it shows the same results for the initial and following pulses regarding 
ID and electron concentration.

On the other hand, as shown in Fig. 7a, the FBE in SOI MOSFET is defined as the decrease of Vth due to the 
accumulated holes at the floating body in the saturation operation (i.e., Vhigh). Compared with FBE in IGZO 
TFT, the accumulation of carriers in the floating body is very similar (Fig. 7b). However, unlike the IGZO TFT, 
the accumulated holes in SOI MOSFET directly influence the device performance, Vth shift. Therefore, the FBE 
is more affected by the delay time (td; the time between the initial pulse and the following pulse), which deter-
mines the recombination rate of the floating holes rather than tf. In the case of short td (green line, Fig. 7c), the 
overdrive voltage (i.e., VGS-Vth) increases during the following pulse since the floating holes lower Vth. As a result, 
despite the same bias condition, the larger ID generates larger excess holes due to impact ionization, and there 
is positive feedback regarding ID and floating holes. In contrast, if td is longer than the lifetime of floating holes 
(indigo line, Fig. 7d), the SOI MOSFET under the following pulse is in the same state as that under the initial 
pulse because all floating holes are recombined.

Consequently, the FBEs in IGZO TFT and SOI MOSFET are similar because the accumulated carriers in the 
floating body influence the following pulse in both cases. However, there are main differences in terms of the way 
that the floating carriers impact the device characteristics. In detail, the floating electrons in IGZO TFT induce 
the donor creation if there is a sufficient lateral electric field. At the same time, the floating holes directly change 
body potential and Vth in SOI MOSFET. Therefore, the dominant factors for FBEs are td in SOI MOSFET and 
tf in IGZO TFT, respectively. It is noteworthy that the energy bandgap of IGZO is about three times larger than 
that of Si. Therefore, there are a tiny number of holes in IGZO, and the electron lifetime is much longer than 
that for Si. In addition, the FBE in SOI MOSFET can be suppressed by adjusting the doping concentration and 
by using trap  engineering40–44. However, in the case of IGZO TFT, only a limited range of doping concentration 
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is  allowed45,46, and trap engineering is complex to use due to the amorphous active film  structure47,48. In conclu-
sion, even though IGZO TFT is more robust than SOI MOSFET in impact ionization, it can be more vulnerable 
to FBE depending on circuit operating conditions and results in short failure.

Conclusion
In this study, the FBE in IGZO TFT is reported for the first time, and the effect on the device characteristics is 
investigated. If the AC pulse is applied to the gate and drain simultaneously for switching operation, the donor 
creation at drain region during the Vhigh condition and the FBE-induced donor creation at the source region 
should be considered during the falling edge. In detail, the floating electrons at the channel adjacent to the source 
region are accelerated and activate the peroxide formation if the transition time from Vhigh to Vlow is fast enough. 
Therefore, the short failure occurs as the AC pulse is applied to the gated diode IGZO TFT (i.e., synchronized 
gate and drain) because the donor creation at the drain and source regions are generated simultaneously and 
expanded to the channel. Therefore, the FBE reported for the first time in this manuscript must be considered 
for reliable signal transmission between the gate driver circuits and pixel circuits.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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