
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10061  | https://doi.org/10.1038/s41598-024-59095-3

www.nature.com/scientificreports

A novel transformer‑based 
DL model enhanced 
by position‑sensitive attention 
and gated hierarchical LSTM 
for aero‑engine RUL prediction
Xinping Chen 

Accurate prediction of remaining useful life (RUL) for aircraft engines is essential for proactive 
maintenance and safety assurance. However, existing methods such as physics‑based models, 
classical recurrent neural networks, and convolutional neural networks face limitations in capturing 
long‑term dependencies and modeling complex degradation patterns. In this study, we propose 
a novel deep‑learning model based on the Transformer architecture to address these limitations. 
Specifically, to address the issue of insensitivity to local context in the attention mechanism employed 
by the Transformer encoder, we introduce a position‑sensitive self‑attention (PSA) unit to enhance the 
model’s ability to incorporate local context by attending to the positional relationships of the input 
data at each time step. Additionally, a gated hierarchical long short‑term memory network (GHLSTM) 
is designed to perform regression prediction at different time scales on the latent features, thereby 
improving the accuracy of RUL estimation for mechanical equipment. Experiments on the C‑MAPSS 
dataset demonstrate that the proposed model outperforms existing methods in RUL prediction, 
showcasing its effectiveness in modeling complex degradation patterns and long‑term dependencies.
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Accurate prediction of remaining useful life (RUL) is crucial for proactive maintenance, reducing casualties 
and economic losses. RUL prediction methods are classified into physics-based, artificial intelligence-based, 
and hybrid  models1–7. Physics-based methods use specific models based on failure mechanisms to explain 
degradation patterns and integrate real-time monitoring data for RUL assessment. However, they face limitations 
in complex mechanical  systems8–11. Artificial intelligence methods learn degradation patterns from observational 
data without expert knowledge. They excel in predicting complex systems where physical or statistical models 
are inadequate and have gained attention with advancements in  technology12. Hybrid methods integrate the 
advantages of different approaches but may be limited in complex rotating  machinery13.

With the accumulation of valuable data and the rapid advancement of computing power, deep learning (DL) 
has become a hot topic and has been successfully applied in various engineering fields. DL + PHM has gained 
popularity in both academia and industry. For instance, in the early days, some methods employed classical 
RNN models for regression tasks on time series data. However, RNN models face challenges such as the gradient 
vanishing or exploding  problem14, limiting their performance in long sequence prediction tasks. As a solution, 
RNN variants like  LSTM15,16 and GRU 17 emerged, which use nonlinear gating mechanisms to control the flow 
of information and alleviate these limitations to some extent. The research on using gated networks for RUL 
prediction has been growing rapidly. Zhang et al.18 proposed an LSTM-Fusion network structure for estimating 
the RUL of aircraft engines. This network integrates observation sequences of different lengths to extract hidden 
information effectively. Miao et al.19 introduced a novel dual-task stacked LSTM method that simultaneously 
evaluates the degradation stages and predicts the RUL of aircraft engines. Liu et al.20 presented a multi-level 
prediction approach for aircraft engine health using LSTM and statistical process analysis for bearing fault 
prediction. Zhang et al.21 proposed a dual-task network structure based on bidirectional GRU and a mixture of 
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multiple gating expert units. This structure enables simultaneous evaluation of aircraft engine health status and 
prediction of the RUL. Ma et al.22 introduced a new prediction model based on deep wavelet sequence gated 
recurrent units for RUL prediction of rotating machinery. The proposed wavelet sequence gated recurrent units 
generate wavelet sequences of different scales through a wavelet layer. Xiao et al.23 enhanced the robustness of 
the BLSTM model for RUL prediction by adding Gaussian white noise to the health indicators based on principal 
component analysis. Song et al.24 constructed aircraft engine health indicators using variational autoencoders 
and employed the BLSTM model for RUL prediction.

In addition to enhancing the model’s temporal data processing capability using recurrent approaches, another 
alternative is the use of convolutional neural networks (CNNs), which employ shared receptive fields to improve 
spatial feature  extraction25. CNN-based models have also been successfully applied in RUL prediction and have 
shown competitive performance. Zhu et al.26 proposed a multi-scale CNN for predicting the RUL of bearings. 
Compared to traditional CNNs, this network maintains synchronization of global and local information. Li et al.27 
introduced a new approach based on deep CNNs for RUL prediction using raw data. Yang et al.28 employed a 
dual CNN model for RUL prediction. In this model, the first CNN model identifies early fault points, while the 
second CNN model predicts the RUL. Jiang et al.29 transformed time series data into multi-channel data and 
used CNN to construct health indicators, leading to improved accuracy in residual life prediction.

The Transformer  model30–32, as one of the most popular deep learning architectures in recent years, has been 
introduced for sequence data modeling. It efficiently handles long sequences of parallel data and can be applied 
to time series data of varying lengths. It has achieved remarkable success in various industrial applications, 
including natural language  processing33, machine  vision34, medical  diagnosis35, and more. In recent years, it 
has also been gradually applied in the field of RUL prediction. Zhang et al.36 introduced a novel Transformer-
based bidirectional self-attention deep model for RUL prediction. This method is a fully self-attention-based 
encoder-decoder structure without any RNN/CNN modules. Su et al.37 proposed an adaptive Transformer that 
combines attention mechanisms and recurrent structures for predicting the RUL of rolling bearings. It directly 
models the relationship between shallow features and RUL, mitigating the vanishing gradient problem and better 
representing complex time degradation patterns. Based on the proposed shared temporal attention layer, Chadha 
et al.38 developed two Transformer models specifically designed for handling multivariate time series data and 
applied them to predict the RUL of aircraft engines. Chang et al.39 proposed a novel Transformer model for 
RUL prediction based on a sparse multi-head self-attention mechanism and knowledge distillation technique. 
It effectively reduces the computational burden of the model and improves domain adaptation capability for 
raw signal data of rolling bearings. Ren et al.40 introduced a T2 tensor-assisted multiscale Transformer model to 
accurately predict the RUL of industrial components. Ding et al.41 presented a new convolutional Transformer 
model capable of extracting degradation-related information from both local and global original signals.

In this study, we propose a DL model based on a Transformer-based auto-encoder for the task of RUL 
prediction. Unlike RNN and CNN models, the Transformer architecture allows for the processing of a sequence 
of data in a single pass by leveraging attention mechanisms, enabling access to any part of the historical data 
without being limited by distance. This makes it potentially more powerful in capturing long-term dependencies. 
However, the adopted dot-product self-attention in Transformers results in the extracted high-level features 
being insensitive to their local context at each time  step34, which requires the model to invest more effort in 
estimating the corresponding RUL. Therefore, we introduce position-aware self-attention units (PSA) to enhance 
the model’s ability to focus on the positional relationships of the input data at each time step and improve the 
incorporation of local context. Additionally, to leverage the improved features extracted by the encoder, we design 
a gated hierarchical long short-term memory network (GHLSTM) for regression predictions at different time 
scales, further enhancing the accuracy of RUL prediction for mechanical equipment. The main contributions 
in the article are as follows.

(1) The traditional attention mechanism used in the Transformer encoder is insensitive to the local context, 
which is essential for predicting remaining useful life. The proposed position-aware self-attention (PSA) 
mechanism captures the positional relationships of input data, enabling the model to incorporate local 
context and generate more effective hidden features. This leads to improved accuracy in predicting 
remaining useful life.

(2) For enhancing the ability to model long-term dependencies and improve performance in handling large-
scale sequential data, the gated hierarchical long short-term memory (GHLSTM) network is proposed, 
which learns features at different time scales, enables regression predictions at multiple scales, and provides 
comprehensive feature learning. This results in improved accuracy in predicting RUL.

(3) Experimental results on a widely used aerospace dataset demonstrate the superiority of our proposed 
method over other existing methods based on quantitative evaluation metrics.

The outline of the article is as follows. Section "Introduction" provides an introduction to the research topic. 
Section "Theoretical basis" presents the theoretical basis. Section "Proposed methodology" gives a detailed 
deduction of the proposed DL model. Section "Experimental analysis" is the content of experiments and relevant 
analysis. And finally, a conclusion is given in Section "Conclusion".

Theoretical basis
The Transformer was first introduced in 2017 for NLP  tasks42. It is a sequence-to-sequence model that essentially 
functions as an auto-encoder, composed of a sophisticated encoder module and a decoder module. The encoder 
module maps the input sequence to a high-dimensional hidden vector, which is then fed into the decoder to 
generate the output sequence. Unlike recurrent networks with their sequential data input nature, the Transformer 
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is capable of capturing long-term dependencies by utilizing self-attention mechanisms based on dot products. 
Transformer-based models have achieved remarkable performance in various time series tasks, including natural 
language processing, computer vision, and PHM.

The proposed model primarily focuses on the improved structure of the Transformer encoder module. 
Therefore, in this section, we provide a detailed explanation of the main components and architecture of the 
Transformer encoder module. The Transformer encoder structure, as shown in Fig. 1, mainly consists of multi-
head attention, feed-forward networks, and position encoding.

Multi‑head self‑attention
The multi-head self-attention mechanism is a variant of the attention mechanism widely used in natural language 
processing and machine translation tasks. It is an extension of the self-attention mechanism designed to enhance 
the modeling capacity of the model for different semantic information. The self-attention mechanism allows 
the model to interact and exchange information between different positions in the input sequence, while the 
multi-head self-attention mechanism further expands this interactive capability. It achieves this by applying 
the attention mechanism to different projections in multiple subspaces, creating multiple attention heads. Each 
attention head has its own set of parameters and can learn different attention weights to capture the associations 
between different semantic information.

The calculation process of the multi-head self-attention mechanism is as follows. We project the input 
sequence, i.e. f =

{

fi
}t

i=1
 with fi w.r.t xi and fi ∈ Rd , into multiple subspaces through linear transformations. 

For each attention head, we use different parameter matrices to perform the projection, obtaining representations 
for each sub-space. We denote the parallel attention calculations as H, which represents the multi-head attention 
mechanism:

where WA ∈ RHdk×d and dk = d/H;kj,Vj and Qj are the key, value and query vectors; headj is the jth attention 
head; Wk

j  , W
v
j  , W

q
j ∈ Rd×dk are the trainable matrixes.

Feedforward neural network and position encoding
The feed-forward NN is composed of two full connection (FC) layers with ReLU activation function, whose 
formula is as follows,

(1)MultiHead(Q,K,V) = Concat({headj}Hj=1)W
A,

(2)headj = Attention(Q,K,V)j = softmax(
QjK

T
j√

dk
)Vj ,

(3)

Kj = fWk
j

Vj = fWv
j

Qj = fW
q
j

Input

Multi self-attention

Layer Normalization

Feed-Forward

Layer Normalization

linear

Output 

Nx

Figure 1.  The diagram of the Transformer encoder module.
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where W and b are the weights and bias of the following connected FC layers,x is the input of the forward neural 
network.

The formula of position encoding is demonstrated as follows,

By the above design, for given input with any length l, pi and pi+l has a linear relationship, which helps the 
regression model learn the sequence relationship effectively. Thus the final input of the transformer encoder 
module is X = x + p.

Proposed methodology
The proposed enhanced Transformer model
The proposed enhanced Transformer model consists of three parts: the feature extraction module, the encoding 
module, and the regression module, as shown in Fig. 2. The feature extraction module consists of a simple fully 
connected (FC) layer and position encoding, which performs a simple non-linear dimensionality reduction 
on the multidimensional raw data and incorporates positional information. The encoding module further 
compresses and extracts valuable latent features from the extracted features. Compared to the encoding module 
of traditional Transformers, the proposed model mainly adopts Position-Sensitive Attention (PSA) to replace the 
self-attention component, enabling the encoding module to capture more contextual information. The PSA unit 
is integrated to address the insensitivity to local context in the Transformer encoder, thus enhancing the model’s 
ability to incorporate positional relationships and local context at each time step. PSA collectively contributes 
to the generation of latent features with higher efficacy, which benefits the remaining useful life prediction in 
the regression module. The regression module utilizes the proposed GHLSTM with multiple hidden features at 
different time scales for regression prediction. Compared to ordinary linear regression or recursive network-
based regression, it can more effectively learn from hidden features, thereby improving the accuracy of RUL 
predictions.

Supposed that for each sample i, the predicted RUL is Ruli and the true RUL is Ruli . Mean square error (MSE) 
is adopted as a loss function to tune the learnable parameters θ of the proposed enhanced Transformer model 
during the training stage by the optimization Adam, whose formula is given below,

(4)F(x) = W2 · ReLU(W1x + b1)+ b2,

(5)
p
(2s)
i = sin(i/100002s/d)

p
(2s+1)
i = cos(i/100002s/d)
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Figure 2.  The proposed enhanced Transformer model.
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Table 1 shows the hyper-parameters of the proposed DL method. The optimized hyper-parameters of the 
model are obtained by the grid search. The pseudocode of the proposed prediction method has been summarized 
in Table 2.

Position‑sensitive self‑attention (PSA)
To overcome the issue of insensitivity of high-level features to local context in Transformer encoders, we 
introduce a position-aware self-attention (PSA) unit in our proposed model. This improvement enables the 
model to focus on the positional relationships of input data at each time step, thereby enhancing its capability to 
capture local context. Consequently, this approach computes similarity scores between each input element and all 
other elements, considering both content and positional encodings. Attention weights are then computed based 
on these scores, and the output is formed by taking the weighted sum of the inputs. By incorporating positional 
information, the PSA mechanism enhances the model’s ability to capture local context, leading to more accurate 
attention weights and improved feature representations, generating more effective hidden features for accurately 
predicting the RUL of mechanical equipment. This enhanced sensitivity to local context is crucial for accurately 
predicting RUL. The deduction of PSA is described as follows.

(1) Construction of the input:
The input of PSA consists of the input sequence x =

{

x1 x2 · · · xn−1 xn
}

 and the relevant position 
encoding p =

{

p 1 p2 · · · pn−1 pn
}

 , where xi is the feature representation of the ith element, and pi is the 
position encoding of the position i whose formulas are Eq. (5).

(2) The calculation of the similarity score:

(6)L(MSE, θ) =
1

2

N
∑

i=1

(

Ruli − Ruli
)2
.

Table 1.  The hyper-parameters of the proposed enhanced Transformer model.

Sub layer Hyperparameter value Sub layer Hyperparameter value

Linear 14 Number of encoder module 2

MPSA 4 Learning rate 0.005

Feedforward 128 Output layer 1

GHLSTM 15 Dropout 0.2

Table 2.  The pseudocode of the proposed RUL prediction method.

Algorithm: the enhanced Transformer 
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For each element xi in the input sequence, calculate the similarity Score sij of other elements xj in the input 
sequence x , meantime considering the influence of position encoding pij , thus the formula is deduced as follows,

(3) The calculation of attention weights:
For each element xi , calculating the attention weights wij based on the similarity Score,

(4) Finally, the output element x̃i after PSA is the weighted sum of attention weights with wij the input element,

Position-sensitive attention mechanism considers both the correlation between elements and the influence 
of position encoding, resulting in more accurate and position-aware attention weights.

Gated hierarchical long short‑term memory network (GHLSTM)
The goal of the Hierarchical LSTM with gating is to further enhance the LSTM model’s ability to model long-term 
dependencies and improve its performance in handling large-scale sequential data. It achieves this by introducing 
multiple levels of gating to gradually model dependencies at different time scales. The diagram of GHLSTM is 
shown in Fig. 3. The GHLSTM network is designed to model long-term dependencies across multiple time scales, 
thereby enhancing the accuracy of RUL prediction. This method consists of two hierarchical LSTM layers: a 
top-level LSTM for modeling global long-term dependencies and a bottom-level LSTM for capturing medium-
term dependencies. The top LSTM processes the entire input sequence to capture long-term dependencies. The 
bottom LSTM processes half of the input sequence to capture medium-term dependencies. The outputs of the 
top and bottom LSTMs are concatenated to form the final output as a comprehensive temporal representation. 
The approach enables the model to adaptively focus on relevant features across different time scales, thereby 
improving the overall RUL prediction accuracy.

For the top hierarchical LSTM, the whole sequence of the input x1t is input into the LSTM cellular, the 
formula is,

For the bottom hierarchical LSTM, half of the whole sequence of the input x2t is input into the LSTM cellular 
to extract the hidden feature in another time scale. Noted that the time scale can be deiced by the requirements. 
The formula of the bottom hierarchical LSTM cellular is,

(7)

s1ij = similarity
(

xi pij

)

=
(

xi · pij
)

/

(

∥

∥xi
∥

∥ ∗
∥

∥

∥
pij

∥

∥

∥

)

s2ij = similarity
(

xi pij

)

=
(

xi · pij
)

/

(

∥

∥xi
∥

∥ ∗
∥

∥

∥
pij

∥

∥

∥

)

sij = similarity
(

s1ij s2ij

)

=
(

s1ij · s2ij
)

/

(∥

∥

∥
s1ij

∥

∥

∥
∗
∥

∥

∥
s2ij

∥

∥

∥

)

(8)
wij = softmax

(

sij
)

=
exp

(

sij
)

n
∑

k=1

exp (sik)

.

(9)x̃i =
n

∑

j=1

wij .xj .

(10)i1t = σ(w1ixx1t + w1ihh1t−1 + b1i),

(11)f1t = σ
(

w1fxx1t + w1fhh1t−1 + b1f
)

,

(12)o1t = σ(w1oxx1t + w1ohh1t−1 + b1o),

(13)c1t = tanh (w1cxx1t + w1chh1t−1 + b1c),

(14)c1t = f1t ⊙ c1t−1 + i1t ⊙ c1t ,

(15)h1t = o1t ⊙ tanh (c1t),

(16)i2t = σ
(

w2
ixx

2
t + w2

ihh
2
t−1 + b2i

)

,

(17)f2t = σ
(

w2fxx2t + w2fhh2t−1 + b2f
)

,

(18)o2t = σ(w2oxx2t + w2ohh2t−1 + b2o),

(19)c2t = tanh (w2cxx2t + w2chh2t−1 + b2c),

(20)c2t = f2t ⊙ c2t−1 + i2t ⊙ c2t ,
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where wix(wfx , wox and wcx ), and wih(wfh , woh , and wch ) are the input and recurrent matrix weights, bi(bf  , 
bo , and bc ) are the bias of the hidden layer,ct denotes the internal state of the cell, ct denotes the memory cell 
state, σ represents the sigmoid function; tanh represents the tanh activation, and ⊙ represents the pointwise 
multiplication. And the definitions of the two LSTM cellular are the same.

Then the output of the top hierarchical LSTM cellular h1t and the bottom hierarchical LSTM cellular h2t are 
combined to construct the final output of GHLSTM ht,

where w are the connected weights making the two outputs the same dimension.

Experimental analysis
Evaluation indexes
The widely used evaluation indexes for RUL prediction, i.e. score and root mean square error (RMSE), are 
adopted for the quantitated demonstration of the model performance. And the formulas of the indexes are 
given below,

(21)h2t = o2t ⊙ tanh (c2t),

(22)ht = w1h1t + w2h2t .

(23)Ai =
{

exp(−((Ruli − Ruli)/13))− 1,

exp((Ruli − Ruli)/10)− 1,

Ruli < Ruli
Ruli ≥ Ruli

(24)Score =
N
∑

i=1

Ai ,

Figure 3.  The structure of the proposed GHLSTM.
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As shown in Fig. 4, it serves as a graphical representation of the trend of evaluation metrics. The curve’s 
changing trend is easily discernible from the graph. When the error is positive, the Score value increases rapidly, 
indicating that the Score imposes a stronger penalty on lagged predictions. This characteristic aligns better with 
practical engineering requirements. Therefore, the Score is considered more reasonable compared to RMSE.

The description of the C‑MAPSS dataset
To demonstrate the effectiveness and superiority of the proposed method in predicting the remaining useful life 
of aircraft engines, we utilized the C-MAPSS dataset provided by  NASA27, whose diagram is shown in Fig. 5. 
The dataset consists of a collection of aircraft engines, as shown in the figure. Furthermore, to showcase the 
capabilities of the proposed method under different operating conditions and fault modes, we used the simplest 
FD001 dataset and the most complex FD004 dataset as validation data.

FD001 dataset consists of 100 engines operating under a single operating condition and a single fault mode. 
The engines have varying lifespans, with the shortest operational cycle being 128 and the longest being 362. 
The dataset includes sensor measurements, such as fan speed, compressor speed, oil pressure, and various 
temperatures, along with operational settings like throttle setting and true airspeed. FD004 is a more complex 
dataset derived from the same aircraft engine simulations, containing 249 engines operating under 6 different 
operating conditions and experiencing 2 different fault modes. Similar to FD001, the engines have lifespans 
ranging from 128 to 543 operational cycles. The sensor measurements and operational settings are also similar 
to FD001, but the inclusion of multiple conditions and fault modes makes FD004 significantly more challenging 
for RUL prediction. The data details are presented in Table 3. The tasks of FD001 and FD004 remain the same, 
to accurately predict the RUL of each engine.

The preprocessing of input
Firstly, we delete the unimportant sensor measurements (sensors 1, 5, 6, 10, 16, 18, and 19), which are stable and 
have less degradation information. According to the  literature27, operating condition information is also helpful 
in RUL prediction. Thus the final input matrix consists of the remaining 14 sensor measurements and the three 
operating condition information. The second step, data segmentation is executed, as shown in Fig. 6 For the ith 
input with n dimension input and l sequence length (window size), the relevant RUL label is set as Ts–l–(i–1) × m, 
where m and T are the sliding steps and full-lifecycle value. Through greedy search by the experiments, the 
hyper-parameters l and m are set to 30 and 1. The last step is the linear piecewise RUL preprocessing for the 
RUL label Rulmax = 125 as below,

(25)RMSE =

√

√

√

√

1

N

N
∑

i=1

(

Ruli − Ruli
)2
,

Figure 4.  The curves of the two evaluation indexes.

Figure 5.  Diagram of the aircraft  engine27.
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The analysis and comparison of RUL prediction results
RUL prediction performance of the proposed method
The predicted results of the proposed model on the FD001 and FD004 subsets are shown in the figures below. 
In Figs. 7, 8, the value of the x-axis denotes the test engine number of the subset, while the y-axis represents 
the remaining useful life values (in cycles). The predicted remaining useful life and the actual remaining useful 
life of the test engines are represented by the red solid line and the purple dashed line, respectively. Overall, 
the predicted remaining useful life values of the test set engines in both subsets roughly align with the actual 
values, indicating the effectiveness of the proposed method in predicting the remaining useful life in these two 
subsets. Additionally, the error between the predicted life and the actual life in Fig. 7 is smaller than in Fig. 8. This 

(26)Rul =
{

Rul, if Rul ≤ Rulmax

Rulmax, if Rul > Rulmax

Table 3.  The details of dataset C-MAPSS.

Subset FD001 FD004

Total number of engines 100 249

Operating condition 1 6

Type of fault 1 2

Maximum cycles 362 543

Minimum cycles 128 128

Full life lenghth T

Step size m

Window size l
RUL=T-l

RUL=T-l-m

Figure 6.  Processing of data segmentation.

Figure 7.  RUL prediction performance on FD001.

Figure 8.  RUL prediction performance on FD004.
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indicates that the proposed model performs better on the FD001 subset compared to the FD004 dataset. This is 
because the degradation trend of the aerospace engine under a single operating condition is relatively simpler. 
Moreover, there is a significant overlap between the degradation trends of the training set and the test set of 
aerospace engines. Therefore, the proposed method achieves higher accuracy in predicting the remaining useful 
life of aerospace engines under a single operating condition and a single fault compared to complex operating 
conditions and compound faults.

The proposed model’s predictions on the complete degradation process are shown in Figs. 9a–d and 10a–d 
for four randomly selected aerospace engine engines from each subset The predicted RUL (PR) and actual RUL 
(AR) are represented by the blue line and red line, the absolute error (AE), calculated by based on PR and AR at 
each time instant, is denoted by the green bar. Thus the average error is represented by the mean of all AE values 
(MAE). The overall remaining useful life prediction results for FD001 are significantly better than for FD004, 
as indicated by the average MAE value. As the number of cycles increases, the degradation trend of aerospace 
engine engines becomes apparent. The proposed model exhibits higher accuracy in predicting the remaining 
useful life of most aerospace engine engines in the later stages of degradation compared to the earlier stages, as 
shown in Figs. 9a, c, d and 10a–d.

Ablation experiments
To validate the superiority of the proposed method, namely the effectiveness of PSA and GHLSTM, a series 
of erosion experiments were conducted. Assuming model m1 represents the proposed enhanced Transformer 
model, model m2 uses the same model architecture except for the attention part, which adopts the traditional 
multi-head self-attention module. Similarly, model m3 employs the same deep learning module except for the 
regression module, which uses the traditional LSTM model. Model m4 also uses the same deep learning module, 
but both its regression module and self-attention module adopt traditional models. All models are fine-tuned 

Figure 9.  RUL prediction performance of engines of FD001 ((a) # 46, (b) # 58, (c) # 66, and (d) # 92).

Figure 10.  RUL prediction performance of engines of FD004 ((a) # 35, (b) # 68, (c) # 100, and (d) # 151).
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and ten parallel experiments are conducted. The mean values and standard deviation (std) value of RMSE and 
score across all experiments are calculated, as shown in Table 4. The mean value is taken as the final predicted 
RUL, while std is used to quantify the robustness of the RUL prediction. It is evident from the table that the 
proposed model exhibits the lowest metric values and demonstrates the best predictive performance compared 
to other models. The std value is significantly lower than the mean value. Moreover, the predictive performance 
of m2 and m3 is superior to that of m4. These observations indicate that the proposed techniques contribute to 
the improvement of the accuracy in predicting the RUL.

Compared with state‑of‑arts
To further highlight the advantages of the proposed enhanced Transformer in predicting remaining useful life, a 
comparative experiment was conducted between the proposed model and several state-of-the-art  methods42–49. 
To provide a comprehensive evaluation, the training set and testing set are fixed as the same for all compared 
models, each model was fine-tuned with the optimization goal of maximizing the accuracy in predicting 
remaining useful life, and 10 parallel experiments were conducted on FD001 and FD004 subsets. Subsequently, 
the scores and RMSE values based on the prediction results of all the aforementioned methods are listed in 
Table 5. From the table, it can be observed that all methods perform best in the FD001 subset and worst in the 
FD004 subset. This is because FD001 has the simple operating condition and fault type, while FD004 is the most 
complex subset with a larger number of tested engines.

On the FD001 dataset, which contains a single operating condition and fault mode, the proposed model 
achieved a Score of 220 ± 23 and an RMSE of 13.14 ± 0.21. This performance showed an improvement of 4% in 
Score compared to the best-performing existing method (acyclic graph network), which obtained a Score of 229 
and an RMSE of 11.96. While the RMSE value of the proposed method is lower than acyclic graph network, the 
evaluation index Score is more in line with the actual engine and the Score value is lower than Acyclic Graph 
Network. This means that the comprehensive performance of the proposed method is best compared with other 
models.

Furthermore, on the more complex FD004 dataset, which encompasses multiple operating conditions and 
faults, the proposed model achieved a Score of 1420 ± 125 and an RMSE of 14.25 ± 0.25. This performance 
demonstrated an improvement of 10% in Score and 6% in RMSE compared to the best-performing existing 
method (SIGRNNDWI), which obtained a Score of 1568 and an RMSE of 15.12. Overall, the proposed model 
exhibited improved RUL prediction accuracy on both datasets, particularly on the more complex FD004 subset. 
These results validate the effectiveness of the proposed PSA and GHLSTM techniques in enhancing RUL 
prediction for aircraft engines.

Table 4.  The RUL prediction comparisons of different methods on subset FD001and FD002.

Model

FD001 FD004

Score RMSE Score RMSE

m4 (mean ± std) 301 ± 33 14.58 ± 0.41 2310 ± 199 16.35 ± 0.63

m3 (mean ± std) 265 ± 28 13.45 ± 0.35 1765 ± 165 15.89 ± 0.54

m2 (mean ± std) 244 ± 23 13.65 ± 0.28 1580 ± 136 15.76 ± 0.42

m1 (mean ± std) 220 ± 23 13.14 ± 0.21 1420 ± 125 14.25 ± 0.25

Table 5.  The RUL prediction comparisons of different methods on subset FD001and FD002.

Model

FD001 FD004

Score RMSE Score RMSE

MONBNE42 334 15.04 6558 28.66

LSTM + attention + handscraft  feature43 322 14.53 5649 27.08

Acyclic graph  network44 229 11.96 3370 22.43

AEQRNN45 N/A N/A 4597 20.60

MCLSTM-based46 260 13.21 2926 22.10

SMDN47 240 13.72 1591 18.24

SIGRNNDWI48 229 13.14 1568 15.12

MSBLS49 – – 1785 17.75

Proposed (mean ± Std) 220 ± 23 13.14 ± 0.21 1420 ± 125 14.25 ± 0.25

Improvement 4% – 10% 6%
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Conclusion
For accurately predicting the RUL of aero-engines, this article proposed a novel enhanced transformer-based DL 
method with the PSA mechanism and GHLSTM method. The main contributions of the article are as follows. 
One is the proposed PSA mechanism, PSA can solve the problem of the traditional attention mechanism that the 
extracted high-level features are insensitive to their local context at each time step. Another is the development 
of GHLSTM, GHLSTM can learn the hidden features at different time scales, which helps to improve RUL. The 
effect of the proposed technologies has been validated by the ablation experiments. Through the quantitative 
evaluation of common indicators, the proposed method has an average improvement of 7% in Score and 11% in 
RMSE compared with other methods on the RUL prediction tasks of FD001 and FD004.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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