Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The refinery of the future

Abstract

Fossil fuels—coal, oil and gas—supply most of the world’s energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The anticipated refinery of 2050 compared with the refinery of 2020.
Fig. 2: Overview of the various conversion processes in the refinery of the future.
Fig. 3: A scenario for hydrocarbon fuels production processes in the refinery of the future.
Fig. 4: Integration of the carbon streams in the refinery of the future.

Similar content being viewed by others

References

  1. National Oceanic and Atmospheric Administration (NOAA). Broken record: atmospheric carbon dioxide levels jump again. NOAA https://www.noaa.gov/news-release/broken-record-atmospheric-carbon-dioxide-levels-jump-again (2023).

  2. United Nations. Paris Agreement to the United Nations Framework Convention on Climate Change (United Nations, 2015).

  3. United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change (United Nations, 1997).

  4. European Commission. Proposal for a Regulation of the European Parliament and of the Council Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law) (European Commission, 2020).

  5. Smalley, R. E. Future global energy prosperity: the terawatt challenge. MRS Bull. 30, 412–417 (2005). This study and the next one discuss the magnitude of the challenges with respect to the energy transition.

  6. Kurtz, S. R. et al. Revisiting the terawatt challenge. MRS Bull. 45, 159–164 (2020).

    Article  ADS  Google Scholar 

  7. Breyer, C. et al. On the history and future of 100% renewable energy systems research. IEEE Access 10, 78176–78218 (2022).

    Article  Google Scholar 

  8. Yergin, D. The Prize: The Epic Quest for Oil, Money, and Power (Simon & Schuster, 1992).

  9. Hagen, J. Industrial Catalysis: A Practical Approach 3rd edn (Wiley, 2015).

  10. Rase, H. F. Handbook of Commercial Catalysts: Heterogeneous Catalysts (CRC, 2000).

  11. van Santen, R. A. Modern Heterogeneous Catalysis: An Introduction (Wiley, 2017).

  12. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015). This paper summarizes some historical developments of the fluid catalytic cracking process, including the co-processing of biomass.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vogt, E. T. C., Whiting, G. T., Chowdhury, A. D. & Weckhuysen, B. M. Zeolites and zeotypes for oil and gas conversion. Adv. Catal. 58, 143–314 (2015).

  14. Reliance Industries Limited. Petroleum Refining & Marketing. Reliance Industries Limited https://www.ril.com/ourbusinesses/petroleumrefiningandmarketing.aspx (2021).

  15. Alabdullah, M. A. et al. A viewpoint on the refinery of the future: catalyst and process challenges. ACS Catal. 10, 8131–8140 (2020). This study provides an excellent perspective on the crude-to-chemicals approaches available and to be developed in the next decade.

    Article  CAS  Google Scholar 

  16. British Petroleum (BP). Energy Outlook: 2020 Edition (BP, 2020).

  17. 2018 Worldwide Refining Survey. Oil Gas J. (2018).

  18. Koytsoumpa, E. I., Bergins, C. & Kakaras, E. The CO2 economy: review of CO2 capture and reuse technologies. J. Supercrit. Fluids 132, 3–16 (2018).

    Article  CAS  Google Scholar 

  19. Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. Recent advances in carbon capture storage and utilisation technologies: a review. Environ. Chem. Lett. 19, 797–849 (2021).

    Article  CAS  Google Scholar 

  20. Leung, D. Y. C., Caramanna, G. & Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014).

    Article  CAS  Google Scholar 

  21. Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chatterjee, S. & Huang, K. W. Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways. Nat. Commun. 11, 3287 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Realmonte, G. et al. Reply to “High energy and materials requirement for direct air capture calls for further analysis and R&D”. Nat. Commun. 11, 3286 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Climeworks. Climeworks, ON Power and Carbfix partner together. Climeworks https://www.climeworks.com/news/climeworks-has-signed-groundbreaking-agreements-with (2020).

  25. Carbon Engineering. Our Technology. Carbon Engineering https://carbonengineering.com/our-technology/ (2024).

  26. Madhu, K., Pauliuk, S., Dhathri, S. & Creutzig, F. Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nat. Energy 6, 1035–1044 (2021).

    Article  ADS  CAS  Google Scholar 

  27. Siegelman, R. L., Kim, E. J. & Long, J. R. Porous materials for carbon dioxide separations. Nat. Mater. 20, 1060–1072 (2021). This article summarizes the latest developments and applications of CO2-capturing porous materials.

  28. Zhu, P. & Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    Article  CAS  Google Scholar 

  29. Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2021).

    Article  CAS  Google Scholar 

  30. Marques Mota, F. & Kim, D. H. From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chem. Soc. Rev. 48, 205–259 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Kraan, O., Kramer, G. J., Haigh, M. & Laurens, C. An energy transition that relies only on technology leads to a bet on solar fuels. Joule 3, 2286–2290 (2019). This paper provides a good primer on the challenges of the energy transition.

  33. Pivovar, B. Catalysts for fuel cell transportation and hydrogen related uses. Nat. Catal. 2, 562–565 (2019).

    Article  CAS  Google Scholar 

  34. Maitlis, M. & de Klerk, A. Greener Fischer-Tropsch Processes for Fuels and Feedstocks (Wiley, 2013).

  35. Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Pan, X., Jiao, F., Miao, D. & Bao, X. Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chem. Rev. 121, 6588–6609 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Shell. Pearl GTL. Shell https://www.shell.com/about-us/major-projects/pearl-gtl.html (2024).

  38. Shell. Synthetic kerosene. Shell https://www.shell.com/business-customers/aviation/the-future-of-energy/sustainable-aviation-fuel/synthetic-kerosene.html (2021).

  39. Daza, Y. A. & Kuhn, J. N. CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv. 6, 49675–49691 (2016).

    Article  ADS  CAS  Google Scholar 

  40. Bahmanpour, A. M., Signorile, M. & Kröcher, O. Recent progress in syngas production via catalytic CO2 hydrogenation reaction. Appl. Catal. B Environ. 295, 120319 (2021).

    Article  CAS  Google Scholar 

  41. Lu, Y. et al. Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network. Electrochem. Commun. 97, 87–90 (2018).

    Article  ADS  CAS  Google Scholar 

  42. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). This article provides an excellent overview on electrocatalytic conversion of CO2.

  43. Liu, S., Wang, Y. & Norwood, S. Discovering effective descriptors for CO2 electro-reduction to predict the catalysts with different selectivity. J. Phys. Chem. C 125, 4550–4558 (2021).

    Article  CAS  Google Scholar 

  44. Gao, F. Y., Bao, R. C., Gao, M. R. & Yu, S. H. Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 8, 15458–15478 (2020).

    Article  CAS  Google Scholar 

  45. Wei, X., Li, Y., Chen, L. & Shi, J. Formic acid electro‐synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem. 133, 3185–3192 (2021).

    Article  ADS  Google Scholar 

  46. Vass, Á., Kormányos, A., Kószo, Z., Endrődi, B. & Janáky, C. Anode catalysts in CO2 electrolysis: challenges and untapped opportunities. ACS Catal. 12, 1037–1051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pakhare, D. & Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43, 7813–7837 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2, 188–197 (2019).

    Article  CAS  Google Scholar 

  49. Sánchez-Bastardo, N., Schlögl, R. & Ruland, H. Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Ind. Eng. Chem. Res. 60, 11855–11881 (2021).

    Article  Google Scholar 

  50. Hank, C. et al. Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide–power-to-methanol. Sustain. Energy Fuels 2, 1244–1261 (2018).

    Article  CAS  Google Scholar 

  51. Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M. & Gascon, J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat. Catal. 1, 398–411 (2018).

    Article  CAS  Google Scholar 

  52. Matieva, Z. M., Snatenkova, Y. M., Kolesnichenko, N. V. & Khadzhiev, S. N. Catalysts for synthesizing liquid hydrocarbons from methanol and dimethyl ether: a review. Catal. Ind. 11, 101–112 (2019).

    Article  Google Scholar 

  53. Olsbye, U. et al. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chem. Soc. Rev. 44, 7155–7176 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. van Bavel, S., Verma, S., Negro, E. & Bracht, M. Integrating CO2 electrolysis into the gas-to-liquids–power-to-liquids process. ACS Energy Lett. 5, 2597–2601 (2020).

    Article  Google Scholar 

  55. Ouda, M. et al. in Zukünftige Kraftstoffe. ATZ/MTZ-Fachbuch (ed. Maus, W.) 380–409 (Springer, 2019).

  56. Nielsen, D. U., Hu, X.-M., Daasbjerg, K. & Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 1, 244–254 (2018).

    Article  CAS  Google Scholar 

  57. Alam, M. I., Cheula, R., Moroni, G., Nardi, L. & Maestri, M. Mechanistic and multiscale aspects of thermo-catalytic CO2 conversion to C1 products. Catal. Sci. Technol. 11, 6601–6629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maity, S. K. Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew. Sustain. Energy Rev. 43, 1427–1445 (2015).

    Article  CAS  Google Scholar 

  59. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).

    Article  CAS  Google Scholar 

  61. Sheldon, R. A. Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950–963 (2014). This paper provides a good overview of the field of catalytic biomass conversion.

  62. Ennaert, T. et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 45, 584–611 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Melero, J. A., Iglesias, J. & Garcia, A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ. Sci. 5, 7393 (2012).

    Article  CAS  Google Scholar 

  64. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Kumar, B. & Verma, P. Biomass-based biorefineries: an important architype towards a circular economy. Fuel 288, 119622 (2021).

    Article  CAS  Google Scholar 

  66. Han, X., Wang, H., Zeng, Y. & Liu, J. Advancing the application of bio-oils by co-processing with petroleum intermediates: a review. Energy Convers. Manag. X 10, 100069 (2020).

    Google Scholar 

  67. Huber, G. W. & Corma, A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. 46, 7184–7201 (2007).

    Article  CAS  Google Scholar 

  68. Wang, Z., Burra, K. G., Lei, T. & Gupta, A. K. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-a review. Prog. Energy Combust. Sci. 84, 100899 (2021).

    Article  Google Scholar 

  69. Ondrey, G. Making renewable diesel and biopropane from vegetable oil. Chem. Eng. 121, 11–12 (2014).

    Google Scholar 

  70. Dayton, D. C. et al. Design and operation of a pilot-scale catalytic biomass pyrolysis unit. Green Chem. 17, 4680–4689 (2015).

    Article  CAS  Google Scholar 

  71. Xu, C., Paone, E., Rodríguez-Padrón, D., Luque, R. & Mauriello, F. Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols. Renew. Sustain. Energy Rev. 127, 109852 (2020).

    Article  CAS  Google Scholar 

  72. Sudarsanam, P., Peeters, E., Makshina, E. V., Parvulescu, V. I. & Sels, B. F. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem. Soc. Rev. 48, 2366–2421 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Luterbacher, J. S., Martin Alonso, D. & Dumesic, J. A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem. 16, 4816–4838 (2014).

    Article  CAS  Google Scholar 

  75. Gupta, S., Mondal, P., Borugadda, V. B. & Dalai, A. K. Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: a comprehensive review. Environ. Technol. Innov. 21, 101276 (2021).

    Article  CAS  Google Scholar 

  76. Fiorentino, G., Ripa, M. & Ulgiati, S. Chemicals from biomass: technological versus environmental feasibility. A review. Biofuels Bioprod. Biorefin. 11, 195–214 (2017).

    Article  CAS  Google Scholar 

  77. Eagan, N. M., Kumbhalkar, M. D., Buchanan, J. S., Dumesic, J. A. & Huber, G. W. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat. Rev. Chem. 3, 223–249 (2019). This article provides an overview of all the catalytic possibilities for making diesel and jet fuel from ethanol.

    Article  CAS  Google Scholar 

  78. Barnés, M. C., de Visser, M. M., van Rossum, G., Kersten, S. R. A. & Lange, J. P. Liquefaction of wood and its model components. J. Anal. Appl. Pyrolysis 125, 136–143 (2017).

    Article  Google Scholar 

  79. Lange, J. P. Catalysis for biorefineries – performance criteria for industrial operation. Catal. Sci. Technol. 6, 4759–4767 (2016). Key paper highlighting the challenges associated with biomass conversion.

    Article  CAS  Google Scholar 

  80. Lange, J. Performance metrics for sustainable catalysis in industry. Nat. Catal. 4, 186–192 (2021).

    Article  CAS  Google Scholar 

  81. Plastics Europe. Plastics – the facts 2020. Plastics Europe https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ (2020).

  82. Martín, A. J., Mondelli, C., Jaydev, S. D. & Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem 7, 1487–1533 (2021).

    Article  Google Scholar 

  83. Wu, C., Zhang, Y., Zhang, H. & Miskolczi, N. Novel technologies and methods for plastics recycling. Process Saf. Environ. Prot. 149, 557–558 (2021).

    Article  CAS  Google Scholar 

  84. Zhang, F. et al. Current technologies for plastic waste treatment: a review. J. Clean. Prod. 282, 124523 (2021).

    Article  CAS  Google Scholar 

  85. Weckhuysen, B. M. Creating value from plastic waste. Science 370, 400–401 (2020).

    Article  PubMed  Google Scholar 

  86. Lange, J. Managing plastic waste—sorting, recycling, disposal, and product redesign. ACS Sustain. Chem. Eng. 9, 15722–15738 (2021).

    Article  CAS  Google Scholar 

  87. Scott, A. Industry plastic-waste initiative advances. Chem. Eng. News 98, 11 (2020).

    Google Scholar 

  88. Tullo, A. H. LyondellBasell opens recycling pilot plant. Chem. Eng. News 98, 12 (2020).

    Google Scholar 

  89. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020). This paper provides an overview of the scientific and technological challenges, as well as the perspectives, of chemical recycling of plastic waste.

    Article  CAS  Google Scholar 

  90. Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    Article  CAS  Google Scholar 

  91. Di, J., Reck, B. K., Miatto, A. & Graedel, T. E. United States plastics: large flows, short lifetimes, and negligible recycling. Resour. Conserv. Recycl. 167, 105440 (2021).

    Article  CAS  Google Scholar 

  92. Gopinath, K. P., Nagarajan, V. M., Krishnan, A. & Malolan, R. A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: development of a comprehensive index. J. Clean. Prod. 274, 123031 (2020).

    Article  Google Scholar 

  93. Sivagami, K. et al. Catalytic pyrolysis of polyolefin and multilayer packaging based waste plastics: a pilot scale study. Process Saf. Environ. Prot. 149, 497–506 (2021).

    Article  CAS  Google Scholar 

  94. Rodríguez-Luna, L., Bustos-Martínez, D. & Valenzuela, E. Two-step pyrolysis for waste HDPE valorization. Process Saf. Environ. Prot. 149, 526–536 (2021).

    Article  Google Scholar 

  95. Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 73, 346–368 (2017).

    Article  CAS  Google Scholar 

  96. Jeswani, H. et al. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 769, 144483 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Čolnik, M., Knez, Ž. & Škerget, M. Sub- and supercritical water for chemical recycling of polyethylene terephthalate waste. Chem. Eng. Sci. 233, 116389 (2021).

    Article  Google Scholar 

  98. Kurzweil, R. The Singularity Is Near (Viking, 2005).

  99. Kurzweil, R. The law of accelerating returns. Kurzweil collection https://www.writingsbyraykurzweil.com/the-law-of-accelerating-returns (2024).

  100. Rosling, H., Rosling, O. & Rosling Rönnlund, A. Factfulness: Ten Reasons We’re Wrong About The World – And Why Things Are Better Than You Think (Hodder & Stoughton, 2019).

  101. Climeworks. Climeworks takes another major step on its road to building gigaton DAC capacity. Climeworks https://climeworks.com/news/climeworks-announces-groundbreaking-on-mammoth (2022).

  102. International Energy Agency (IEA). Global Hydrogen Review 2021 (IEA, 2021).

  103. Haru Oni. Tomorrow’s fuel. Haru Oni https://www.haruoni.com/#/en (2021).

  104. Ehteshami, S. M. M. & Chan, S. H. The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges. Energy Policy 73, 103–109 (2014).

    Article  CAS  Google Scholar 

  105. Pearson, P. J. G. & Foxon, T. J. A low carbon industrial revolution? Insights and challenges from past technological and economic transformations. Energy Policy 50, 117–127 (2012).

    Article  Google Scholar 

  106. Nazir, H. et al. Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. Int. J. Hydrog. Energy 45, 28217–28239 (2020).

    Article  CAS  Google Scholar 

  107. Yates, J. et al. Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis. Cell Rep. Phys. Sci. 1, 100209 (2020).

    Article  CAS  Google Scholar 

  108. International Energy Agency (IEA). Average annual capacity factors by technology, 2018. IEA https://www.iea.org/data-and-statistics/charts/average-annual-capacity-factors-by-technology-2018 (2019).

  109. UK Department for Business, Energy & Industrial Strategy. Digest of UK Energy Statistics (DUKES). gov.uk https://www.gov.uk/government/collections/digest-of-uk-energy-statistics-dukes (2020).

  110. Global Solar Atlas. Global Photovoltaic Power Potential by Country; Country factsheet: Netherlands. globalsolaratlas.info https://globalsolaratlas.info/global-pv-potential-study (2021).

  111. Global Solar Atlas. Global Photovoltaic Power Potential by Country; Country factsheet: Denmark. globalsolaratlas.info https://globalsolaratlas.info/global-pv-potential-study (2021).

  112. U.S. Energy Information Administration. Capacity factors for utility scale generators primarily using non-fossil fuels. U.S. Energy Information Administration https://www.eia.gov/electricity/annual/html/epa_04_08_b.html (2021).

  113. GE Renewable Energy. Haliade-X offshore turbine. GE Renewable Energy https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine (2022).

  114. European Commission. A Hydrogen Strategy for a Climate-Neutral Europe (European Commission, 2020).

  115. European Commission. Facts Behind the Debate: Direct Air Capture (European Commission, 2019).

  116. Beuttler, C., Charles, L. & Wurzbacher, J. The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions. Front. Clim. 1, 469555 (2019).

    Article  Google Scholar 

  117. Climeworks. Orca: the first large-scale plant. Climeworks https://climeworks.com/roadmap/orca (2021).

  118. Tsiropoulos, I., Tarvydas, D. & Zucker, A. Cost Development of Low Carbon Energy Technologies: Scenario-based Cost Trajectories to 2050, 2017 Edition (Publications Office of the European Union, 2018).

  119. Mayer, J. N. et al. Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems (Fraunhofer-Institute for Solar Energy Systems, 2015).

  120. International Renewable Energy Agency (IRENA). Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-economic Aspects (IRENA, 2019).

  121. Sens, L., Neuling, U. & Kaltschmitt, M. Capital expenditure and levelized cost of electricity of photovoltaic plants and wind turbines – development by 2050. Renew. Energy 185, 525–537 (2022).

    Article  Google Scholar 

  122. International Renewable Energy Agency (IRENA). Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-economic Aspects (IRENA, 2019).

  123. Mayyas, A., Ruth, M., Pivovar, B., Bender, G. & Wipke, K. Manufacturing Cost Analysis for Proton Exchange Membrane Water Electrolyzers (National Renewable Energy Laboratory, 2019).

  124. International Renewable Energy Agency (IRENA). Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal (IRENA, 2020).

  125. Lord, A. S., Kobos, P. H. & Borns, D. J. Geologic storage of hydrogen: scaling up to meet city transportation demands. Int. J. Hydrog. Energy 39, 15570–15582 (2014).

    Article  CAS  Google Scholar 

  126. World Nuclear Association. Nuclear power in France. World Nuclear Association https://world-nuclear.org/information-library/country-profiles/countries-a-f/france.aspx (2024).

  127. Palacios, G. & Janssen, J. Nuclear Energy Economics: An Update to Fact Finding Nuclear Energy (TNO, 2018).

  128. Massachusetts Institute of Technology (MIT). The Future of Nuclear Energy in a Carbon-Constrained World (MIT, 2018).

  129. Carrara, S., Alves Dias, P., Plazzotta, B. & Pavel, C. Raw Materials Demand for Wind and Solar PV Technologies in the Transition Towards a Decarbonised Energy System (Publications Office of the European Union, 2020).

  130. U.S. Geological Survey. U.S. Geological Survey releases 2022 list of critical minerals. U.S. Geological Survey https://www.usgs.gov/news/national-news-release/us-geological-survey-releases-2022-list-critical-minerals (2022).

  131. Kiemel, S. et al. Critical materials for water electrolysers at the example of the energy transition in Germany. Int. J. Energy Res. 45, 9914–9935 (2021).

    Article  CAS  Google Scholar 

  132. Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat. Geosci. 6, 894–896 (2013). Paper articulating that a shift to renewable energy will replace one non-renewable resource (fossil fuel) by another non-renewable resource (metals and minerals).

    Article  ADS  CAS  Google Scholar 

  133. Panoutsou, C. & Maniatis, K. Sustainable Biomass Availability in the EU, to 2050 (Imperial College London Consultants, 2021).

  134. Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the Future of Plastics (World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, 2016).

  135. Mallapragada, D. S. et al. Decarbonization of the chemical industry through electrification: barriers and opportunities. Joule 7, 23–41 (2023).

    Article  CAS  Google Scholar 

  136. Meloni, E. Electrification of chemical engineering: a new way to intensify chemical processes. Energies 15, 5469 (2022).

    Article  Google Scholar 

  137. van Geem, K. M. & Weckhuysen, B. M. Toward an e-chemistree: materials for electrification of the chemical industry. MRS Bull. 46, 1187–1196 (2021).

    Article  ADS  Google Scholar 

  138. Winiwarter, A. et al. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium. Energy Environ. Sci. 12, 1055–1067 (2019).

    Article  CAS  Google Scholar 

  139. Parkinson, B. et al. Hydrogen production using methane: techno-economics of decarbonizing fuels and chemicals. Int. J. Hydrog. Energy 43, 2540–2555 (2018).

    Article  CAS  Google Scholar 

  140. Pavičić, J., Mavar, K. N., Brkić, V. & Simon, K. Biogas and biomethane production and usage: technology development, advantages and challenges in Europe. Energies 15, 2940 (2022).

    Article  Google Scholar 

  141. Scheiblehner, D., Neuschitzer, D., Wibner, S., Sprung, A. & Antrekowitsch, H. Hydrogen production by methane pyrolysis in molten binary copper alloys. Int. J. Hydrog. Energy 48, 6233–6243 (2023).

    Article  CAS  Google Scholar 

  142. Levi, P. G. & Cullen, J. M. Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 52, 1725–1734 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  143. Garcia‐Martinez, J. Chemistry 2030: a roadmap for a new decade. Angew. Chem. Int. Ed. 60, 4956–4960 (2021). Visionary article on the transition from chemistry of transformation towards chemistry of reuse.

    Article  Google Scholar 

  144. Talanquer, V., Bucat, R., Tasker, R. & Mahaffy, P. G. Lessons from a pandemic: educating for complexity, change, uncertainty, vulnerability, and resilience. J. Chem. Educ. 97, 2696–2700 (2020).

    Article  CAS  Google Scholar 

  145. Zheng, L., Ambrosetti, M. & Tronconi, E. Joule-heated catalytic reactors toward decarbonization and process intensification: a review. ACS Eng. Au 4, 4–21 (2024).

    Article  CAS  Google Scholar 

  146. Zheng, L., Ambrosetti, M., Beretta, A., Groppi, G. & Tronconi, E. Electrified CO2 valorization driven by direct Joule heating of catalytic cellular substrates. Chem. Eng. J. 466, 143154 (2023).

    Article  CAS  Google Scholar 

  147. Kim, Y. T., Lee, J.-J. & Lee, J. Electricity-driven reactors that promote thermochemical catalytic reactions via joule and induction heating: a review. Chem. Eng. J. 470, 144333 (2023).

    Article  CAS  Google Scholar 

  148. Balakotaiah, V. & Ratnakar, R. R. Modular reactors with electrical resistance heating for hydrocarbon cracking and other endothermic reactions. AIChE J. 68, e17542 (2022).

    Article  ADS  CAS  Google Scholar 

  149. Liu, L. et al. Alkane dehydrogenation in scalable and electrifiable carbon membrane reactor. Cell Rep. Phys. Sci. 4, 101692 (2023).

    Article  CAS  Google Scholar 

  150. BASF. BASF, SABIC and Linde start construction of the world’s first demonstration plant for large-scale electrically heated steam cracker furnaces. BASF https://www.basf.com/global/en/who-we-are/sustainability/whats-new/sustainability-news/2022/basf-sabic-and-linde-start-construction-of-the-worlds-first-demonstration-plant-for-large-scale-electrically-heated-steam-cracker-furnaces.html (2022).

  151. Coolbrook. Coolbrook successfully cracks naphtha in its large-scale pilot plant leading the way to zero-carbon steam cracking. Coolbrook https://coolbrook.com/news/coolbrook-successfully-cracks-naphtha-in-its-large-scale-pilot-plant-leading-the-way-to-zero-carbon-steam-cracking/ (2023).

  152. Stern, N. The Economics of Climate Change (Cambridge Univ. Press, 2007).

  153. Air Liquide. Air Liquide inaugurates the world’s largest low-carbon hydrogen membrane-based production unit in Canada. Air Liquide https://energies.airliquide.com/air-liquide-inaugurates-worlds-largest-low-carbon-hydrogen-membrane-based-production-unit-canada (2021).

  154. Küngas, R. Review—Electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).

    Article  ADS  Google Scholar 

  155. Jungmeier, G. The Biorefinery Fact Sheet (IEA Bioenergy, 2014).

  156. Cardona-Alzate, C. A., Serna-Loaiza, S. & Ortiz-Sanchez, M. Sustainable biorefineries: what was learned from the design, analysis and implementation. J. Sustain. Dev. Energy Water Environ. Syst. 8, 88–117 (2020).

    Article  Google Scholar 

  157. U.S. Energy Information Administration. Oil and petroleum products explained: refining crude oil. U.S. Energy Information Administration https://www.eia.gov/energyexplained/oil-and-petroleum-products/refining-crude-oil-inputs-and-outputs.php (2019).

  158. International Energy Agency (IEA). Net Zero by 2050: A Roadmap for the Global Energy Sector (IEA, 2021).

  159. International Energy Agency (IEA). Global Hydrogen Review 2022 (IEA, 2022).

Download references

Acknowledgements

B.M.W. acknowledges financial support from the Netherlands Organization for Scientific Research (NWO) in the frame of a Gravitation Programme MCEC (Netherlands Center for Multiscale Catalytic Energy Conversion; www.mcec-researchcenter.nl), as well as from the Advanced Research Center (ARC) Chemical Building Blocks Consortium (CBBC), a public–private research consortium in the Netherlands (www.arc-cbbc.nl). We acknowledge the help of G.-J. Kramer at Utrecht University (UU), the Netherlands, and C. Vogt at Technion, Israel Institute of Technology in Haifa, Israel, for valuable discussions. T. Hartman (UU) is acknowledged for help with the figures.

Author information

Authors and Affiliations

Authors

Contributions

E.T.C.V. and B.M.W. contributed to the conceptualization, analysis, literature review, writing and responses to reviewer comments for this manuscript.

Corresponding authors

Correspondence to Eelco T. C. Vogt or Bert M. Weckhuysen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Peter Levi, Shelie Miller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

A file containing further tables and more detailed calculations on different scenarios, thermodynamics and cost, area and resource requirements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, E.T.C., Weckhuysen, B.M. The refinery of the future. Nature 629, 295–306 (2024). https://doi.org/10.1038/s41586-024-07322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07322-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing