Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

Diagnostic and treatment strategies for pediatric acute lymphoblastic leukemia in low- and middle-income countries

Abstract

The survival rate of children and adolescents with acute lymphoblastic leukemia (ALL), the most common pediatric cancer, has improved significantly in high-income countries (HICs), serving as an excellent example of how humans can overcome catastrophic diseases. However, the outcomes in children with ALL in low- and middle-income countries (LMICs), where approximately 80% of the global population live, are suboptimal because of limited access to diagnostic procedures, chemotherapeutic agents, supportive care, and financial assistance. Although the implementation of therapeutic strategies in resource-limited countries could theoretically follow the same path of improvement as modeled in HICs, intensification of chemotherapy may simply result in increased toxicities. With the advent of genetic diagnosis, molecular targeted therapy, and immunotherapy, the management of ALL is changing dramatically in HICs. Multidisciplinary collaborations between institutions in LMICs and HICs will provide access to strategies that are suitable for institutions in LMICs, enabling them to minimize toxicities while improving outcomes. This article summarizes important aspects of the diagnosis and treatment of pediatric ALL that were mostly developed in HICs but that can be realistically implemented by institutions in countries with limited resources through resource-adapted multidisciplinary collaborations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunotherapy and molecular targeted therapy for childhood acute lymphoblastic leukemia.

Similar content being viewed by others

References

  1. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N. Engl J Med. 2015;373:1541–52.

    Article  CAS  PubMed  Google Scholar 

  2. Inaba H, Pui CH. Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J Clin Med. 2021;10:1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ribeiro RC, Pui CH. Saving the children-improving childhood cancer treatment in developing countries. N. Engl J Med. 2005;352:2158–60.

    Article  CAS  PubMed  Google Scholar 

  4. Hunger SP, Sung L, Howard SC. Treatment strategies and regimens of graduated intensity for childhood acute lymphoblastic leukemia in low-income countries: a proposal. Pediatr Blood Cancer. 2009;52:559–65.

    Article  PubMed  Google Scholar 

  5. Yeoh AE, Tan D, Li CK, Hori H, Tse E, Pui CH, Asian Oncology Summitt 2013. Management of adult and paediatric acute lymphoblastic leukaemia in Asia: resource-stratified guidelines from the Asian Oncology Summit 2013. Lancet Oncol. 2013;14:e508–23.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chiaretti S, Vitale A, Cazzaniga G, Orlando SM, Silvestri D, Fazi P, et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica. 2013;98:1702–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cree IA. The WHO classification of haematolymphoid tumours. Leukemia. 2022;36:1701–2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36:1720–48.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Bhakta N, Ayer Miller V, Revsine M, Litzow MR, Paietta E, et al. Acute leukemia classification using transcriptional profiles from low-cost nanopore mRNA sequencing. JCO Precis Oncol. 2022;6:e2100326.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee SHR, Antillon-Klussmann F, Pei D, Yang W, Roberts KG, Li Z, et al. Association of genetic ancestry with the molecular subtypes and prognosis of childhood acute lymphoblastic leukemia. JAMA Oncol. 2022;8:354–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee SHR, Ashcraft E, Yang W, Roberts KG, Gocho Y, Rowland L, et al. Prognostic and pharmacotypic heterogeneity of hyperdiploidy in childhood ALL. J Clin Oncol. 2023;41:5422–32.

    Article  CAS  PubMed  Google Scholar 

  13. Jeha S, Choi J, Roberts KG, Pei D, Coustan-Smith E, Inaba H, et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy. Blood Cancer Discov. 2021;2:326–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pedrosa F, Coustan-Smith E, Zhou Y, Cheng C, Pedrosa A, Lins MM, et al. Reduced-dose intensity therapy for pediatric lymphoblastic leukemia: long-term results of the Recife RELLA05 pilot study. Blood. 2020;135:1458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sidhom I, Shaaban K, Youssef SH, Ali N, Gohar S, Rashed WM, et al. Reduced-intensity therapy for pediatric lymphoblastic leukemia: impact of residual disease early in remission induction. Blood. 2021;137:20–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cecconello DK, Werlang ICR, Alegretti AP, Hahn MC, de Magalhaes MR, Battistel AP, et al. Monitoring asparaginase activity in middle-income countries. Lancet Oncol. 2018;19:1149–50.

    Article  PubMed  Google Scholar 

  17. Barr RD, Furneaux R, Margottini L, Eden TOB. The international scandal of defective asparaginase: a blight on children with cancer. Pediatr Blood Cancer. 2023;70:e30403.

    Article  PubMed  Google Scholar 

  18. Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood. 1999;94:1209–17.

    Article  CAS  PubMed  Google Scholar 

  19. Ito C, Evans WE, McNinch L, Coustan-Smith E, Mahmoud H, Pui CH, et al. Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. J Clin Oncol. 1996;14:2370–6.

    Article  CAS  PubMed  Google Scholar 

  20. Balis FM, Lester CM, Chrousos GP, Heideman RL, Poplack DG. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5:202–7.

    Article  CAS  PubMed  Google Scholar 

  21. Inaba H, Pui CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010;11:1096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Möricke A, Zimmermann M, Valsecchi MG, Stanulla M, Biondi A, Mann G, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood. 2016;127:2101–12.

    Article  PubMed  Google Scholar 

  23. Bostrom BC, Sensel MR, Sather HN, Gaynon PS, La MK, Johnston K, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2003;101:3809–17.

    Article  CAS  PubMed  Google Scholar 

  24. Mitchell CD, Richards SM, Kinsey SE, Lilleyman J, Vora A, Eden TO. Medical Research Council Childhood Leukaemia Working Party. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol. 2005;129:734–45.

    Article  CAS  PubMed  Google Scholar 

  25. Hurwitz CA, Silverman LB, Schorin MA, Clavell LA, Dalton VK, Glick KM, et al. Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer. 2000;88:1964–9.

    Article  CAS  PubMed  Google Scholar 

  26. Domenech C, Suciu S, De Moerloose B, Mazingue F, Plat G, Ferster A, et al. Dexamethasone (6 mg/m2/day) and prednisolone (60 mg/m2/day) were equally effective as induction therapy for childhood acute lymphoblastic leukemia in the EORTC CLG 58951 randomized trial. Haematologica. 2014;99:1220–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Igarashi S, Manabe A, Ohara A, Kumagai M, Saito T, Okimoto Y, et al. No advantage of dexamethasone over prednisolone for the outcome of standard- and intermediate-risk childhood acute lymphoblastic leukemia in the Tokyo Children’s Cancer Study Group L95-14 protocol. J Clin Oncol. 2005;23:6489–98.

    Article  CAS  PubMed  Google Scholar 

  28. Vrooman LM, Stevenson KE, Supko JG, O’Brien J, Dahlberg SE, Asselin BL, et al. Postinduction dexamethasone and individualized dosing of Escherichia Coli L-asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study-Dana-Farber Cancer Institute ALL Consortium Protocol 00-01. J Clin Oncol. 2013;31:1202–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henze G, Langermann HJ, Ritter J, Schellong G, Riehm H. Treatment strategy for different risk groups in childhood acute lymphoblastic leukemia: a report from the BFM study group. Haematol Blood Transfus. 1981;26:87–93.

    CAS  PubMed  Google Scholar 

  30. Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grumayer R, Möricke A, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118:2077–84.

    Article  CAS  PubMed  Google Scholar 

  31. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grumayer R, Möricke A, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–14.

    Article  CAS  PubMed  Google Scholar 

  32. Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166:421–4.

    Article  CAS  PubMed  Google Scholar 

  33. Conter V, Valsecchi MG, Buldini B, Parasole R, Locatelli F, Colombini A, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3:e80–6.

    Article  PubMed  Google Scholar 

  34. Wood B, Devidas M, Summers RJ, Chen Z, Asselin BL, Rabin KR, et al. Prognostic significance of ETP phenotype and minimal residual disease in T-ALL: a Children’s Oncology Group study. Blood. 2023;142:2069–78.

    Article  CAS  PubMed  Google Scholar 

  35. Campbell M, Kiss C, Zimmermann M, Riccheri C, Kowalczyk J, Felice MS, et al. Childhood Acute Lymphoblastic Leukemia: results of the randomized acute lymphoblastic leukemia Intercontinental-Berlin-Frankfurt-Münster 2009 Trial. J Clin Oncol. 2023;41:3499–511.

    Article  CAS  PubMed  Google Scholar 

  36. Freeman AI, Weinberg V, Brecher ML, Jones B, Glicksman AS, Sinks LF, et al. Comparison of intermediate-dose methotrexate with cranial irradiation for the post-induction treatment of acute lymphocytic leukemia in children. N. Engl J Med. 1983;308:477–84.

    Article  CAS  PubMed  Google Scholar 

  37. Möricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24:265–84.

    Article  PubMed  Google Scholar 

  38. Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G, et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood. 1994;84:3122–33.

    Article  CAS  PubMed  Google Scholar 

  39. Larsen EC, Devidas M, Chen S, Salzer WL, Raetz EA, Loh ML, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from Children’s Oncology Group study AALL0232. J Clin Oncol. 2016;34:2380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36:2926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21:1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matloub Y, Bostrom BC, Hunger SP, Stork LC, Angiolillo A, Sather H, et al. Escalating intravenous methotrexate improves event-free survival in children with standard-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2011;118:243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holland JF, Glidewell O. Oncologists’ reply: survival expectancy in acute lymphocytic leukemia. N. Engl J Med. 1972;287:769–77.

    Article  CAS  PubMed  Google Scholar 

  44. Aur RJ, Simone J, Hustu HO, Walters T, Borella L, Pratt C, et al. Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood. 1971;37:272–81.

    Article  CAS  PubMed  Google Scholar 

  45. Hijiya N, Hudson MM, Lensing S, Zacher M, Onciu M, Behm FG, et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA. 2007;297:1207–15.

    Article  CAS  PubMed  Google Scholar 

  46. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl J Med. 2009;360:2730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Veerman AJ, Kamps WA, van den Berg H, van den Berg E, Bokkerink JP, Bruin MC, et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997-2004). Lancet Oncol. 2009;10:957–66.

    Article  CAS  PubMed  Google Scholar 

  48. Jeha S, Pei D, Choi J, Cheng C, Sandlund JT, Coustan-Smith E, et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. J Clin Oncol. 2019;37:3377–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dunsmore KP, Winter SS, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Children’s Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38:3282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vora A, Andreano A, Pui CH, Hunger SP, Schrappe M, Moericke A, et al. Influence of cranial radiotherapy on outcome in children with acute lymphoblastic leukemia treated with contemporary therapy. J Clin Oncol. 2016;34:919–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jacola LM, Krull KR, Pui CH, Pei D, Cheng C, Reddick WE, et al. Longitudinal assessment of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia treated on a contemporary chemotherapy protocol. J Clin Oncol. 2016;34:1239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jacola LM, Conklin HM, Krull KR, Pei D, Cheng C, Reddick WE, et al. The impact of intensified CNS-directed therapy on neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia treated without cranial irradiation. J Clin Oncol. 2022;40:4218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gajjar A, Harrison PL, Sandlund JT, Rivera GK, Ribeiro RC, Rubnitz JE, et al. Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood. 2000;96:3381–4.

    Article  CAS  PubMed  Google Scholar 

  54. Howard SC, Gajjar AJ, Cheng C, Kritchevsky SB, Somes GW, Harrison PL, et al. Risk factors for traumatic and bloody lumbar puncture in children with acute lymphoblastic leukemia. JAMA. 2002;288:2001–7.

    Article  PubMed  Google Scholar 

  55. Liu HC, Yeh TC, Hou JY, Chen KH, Huang TH, Chang CY, et al. Triple intrathecal therapy alone with omission of cranial radiation in children with acute lymphoblastic leukemia. J Clin Oncol. 2014;32:1825–9.

    Article  PubMed  Google Scholar 

  56. Tang J, Yu J, Cai J, Zhang L, Hu S, Gao J, et al. Prognostic factors for CNS control in children with acute lymphoblastic leukemia treated without cranial irradiation. Blood. 2021;138:331–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matloub Y, Lindemulder S, Gaynon PS, Sather H, La M, Broxson E, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood. 2006;108:1165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Salzer WL, Burke MJ, Devidas M, Dai Y, Hardy KK, Kairalla JA, et al. Impact of intrathecal triple therapy versus intrathecal methotrexate on disease-free survival for high-risk B-lymphoblastic leukemia: Children’s Oncology Group study AALL1131. J Clin Oncol. 2020;38:2628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pieters R, de Groot-Kruseman H, Van der Velden V, Fiocco M, van den Berg H, de Bont E, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 from the Dutch Childhood Oncology Group. J Clin Oncol. 2016;34:2591–601.

    Article  PubMed  Google Scholar 

  60. Ariffin H, Chiew EKH, Oh BLZ, Lee SHR, Lim EH, Kham SKY, et al. Anthracycline-free protocol for favorable-risk childhood ALL: a noninferiority comparison between Malaysia-Singapore ALL 2003 and ALL 2010 studies. J Clin Oncol. 2023;41:3642–51.

    Article  CAS  PubMed  Google Scholar 

  61. Pieters R, de Groot-Kruseman H, Fiocco M, Verwer F, Van Overveld M, Sonneveld E, et al. Improved outcome for ALL by prolonging therapy for IKZF1 deletion and decreasing therapy for other risk groups. J Clin Oncol. 2023;41:4130–42.

    Article  CAS  PubMed  Google Scholar 

  62. Schrappe M, Bleckmann K, Zimmermann M, Biondi A, Möricke A, Locatelli F, et al. Reduced-intensity delayed intensification in standard-risk pediatric acute lymphoblastic leukemia defined by undetectable minimal residual disease: results of an international randomized trial (AIEOP-BFM ALL 2000). J Clin Oncol. 2018;36:244–53.

    Article  CAS  PubMed  Google Scholar 

  63. Teachey DT, Hunger SP, Loh ML. Optimizing therapy in the modern age: differences in length of maintenance therapy in acute lymphoblastic leukemia. Blood. 2021;137:168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Childhood ALL Collaborative Group. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia: overview of 42 trials involving 12 000 randomised children. Lancet. 1996;347:1783–8.

    Article  Google Scholar 

  65. Kato M, Ishimaru S, Seki M, Yoshida K, Shiraishi Y, Chiba K, et al. Long-term outcome of 6-month maintenance chemotherapy for acute lymphoblastic leukemia in children. Leukemia. 2017;31:580–4.

    Article  CAS  PubMed  Google Scholar 

  66. Eden T, Pieters R, Richards S, Childhood Acute Lymphoblastic Leukaemia Collaborative Group (CALLCG). Systematic review of the addition of vincristine plus steroid pulses in maintenance treatment for childhood acute lymphoblastic leukaemia - an individual patient data meta-analysis involving 5,659 children. Br J Haematol. 2010;149:722–33.

    Article  CAS  PubMed  Google Scholar 

  67. Angiolillo AL, Schore RJ, Kairalla JA, Devidas M, Rabin KR, Zweidler-McKay P, et al. Excellent outcomes with reduced frequency of vincristine and dexamethasone pulses in standard-risk B-lymphoblastic leukemia: results from Children’s Oncology Group AALL0932. J Clin Oncol. 2021;39:1437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang W, Cai J, Shen S, Gao J, Yu J, Hu S, et al. Pulse therapy with vincristine and dexamethasone for childhood acute lymphoblastic leukaemia (CCCG-ALL-2015): an open-label, multicentre, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2021;22:1322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guolla L, Breitbart S, Foroutan F, Thabane L, Loh ML, Teachey DT, et al. Impact of vincristine-steroid pulses in maintenance for B-cell pediatric ALL: a systematic review and meta-analysis. Blood. 2023;141:2944–54.

  70. Bhatia S, Landier W, Shangguan M, Hageman L, Schaible AN, Carter AR, et al. Nonadherence to oral mercaptopurine and risk of relapse in Hispanic and non-Hispanic white children with acute lymphoblastic leukemia: a report from the children’s oncology group. J Clin Oncol. 2012;30:2094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 Update. Clin Pharm Ther. 2019;105:1095–105.

    Article  CAS  Google Scholar 

  72. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27:5175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Umeh CA, Garcia-Gonzalez P, Tremblay D, Laing R. The survival of patients enrolled in a global direct-to-patient cancer medicine donation program: the Glivec International Patient Assistance Program (GIPAP). EClinicalMedicine. 2020;19:100257.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pullarkat VA, Lacayo NJ, Jabbour E, Rubnitz JE, Bajel A, Laetsch TW, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021;11:1440–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Teachey DT, Devidas M, Wood BL, Chen Z, Hayashi RJ, Hermiston ML, et al. Children’s Oncology Group trial AALL1231: a phase III clinical trial testing bortezomib in newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma. J Clin Oncol. 2022;40:2106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Issa GC, Aldoss I, DiPersio J, Cuglievan B, Stone R, Arellano M, et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature. 2023;615:920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee SHR, Yang W, Gocho Y, John A, Rowland L, Smart B, et al. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat Med. 2023;29:170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jabbour E, Short NJ, Senapati J, Jain N, Huang X, Daver N, et al. Mini-hyper-CVD plus inotuzumab ozogamicin, with or without blinatumomab, in the subgroup of older patients with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphocytic leukaemia: long-term results of an open-label phase 2 trial. Lancet Haematol. 2023;10:e433–44.

    Article  CAS  PubMed  Google Scholar 

  79. Jabbour E, Haddad FG, Short NJ, Kantarjian H. Treatment of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia-from intensive chemotherapy combinations to chemotherapy-free regimens: a review. JAMA Oncol. 2022;8:1340–8.

    Article  PubMed  Google Scholar 

  80. Brown PA, Ji L, Xu X, Devidas M, Hogan LE, Borowitz MJ, et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA. 2021;325:833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Locatelli F, Zugmaier G, Rizzari C, Morris JD, Gruhn B, Klingebiel T, et al. Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA. 2021;325:843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hogan LE, Brown PA, Ji L, Xu X, Devidas M, Bhatla T, et al. Children’s Oncology Group AALL1331: phase III trial of blinatumomab in children, adolescents, and young adults with low-risk B-cell ALL in first relapse. J Clin Oncol. 2023;41:4118–29.

    Article  CAS  PubMed  Google Scholar 

  83. van der Sluis IM, de Lorenzo P, Kotecha RS, Attarbaschi A, Escherich G, Nysom K, et al. Blinatumomab added to chemotherapy in infant lymphoblastic leukemia. N. Engl J Med. 2023;388:1572–81.

    Article  PubMed  Google Scholar 

  84. Buitenkamp TD, Izraeli S, Zimmermann M, Forestier E, Heerema NA, van den Heuvel-Eibrink MM, et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood. 2014;123:70–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verma A, Lupo PJ, Shah NN, Hitzler J, Rabin KR. Management of down syndrome-associated leukemias: a review. JAMA Oncol. 2023;9:1283–90.

    Article  PubMed  Google Scholar 

  86. Sora F, Annunziata M, Laurenti L, Giammarco S, Chiusolo P, Innocenti I, et al. Blinatumomab as a successful and safe therapy in Down syndrome patients with relapsed/refractory B-precursor acute lymphoblastic leukaemia: case reports and literature review. Pediatr Blood Cancer. 2021;68:e29044.

    Article  PubMed  Google Scholar 

  87. Duffy C, Santana V, Inaba H, Jeha S, Pauley J, Sniderman L, et al. Evaluating blinatumomab implementation in low- and middle-income countries: a study protocol. Implement Sci Commun. 2022;3:62.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jabbour E, Zugmaier G, Agrawal V, Martínez-Sánchez P, Rifón Roca JJ, Cassaday RD, et al. Single agent subcutaneous blinatumomab for advanced acute lymphoblastic leukemia. Am J Hematol. 2024;99:586–95.

    Article  CAS  PubMed  Google Scholar 

  89. Laetsch TW, Maude SL, Rives S, Hiramatsu H, Bittencourt H, Bader P, et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J Clin Oncol. 2023;41:1664–9.

    Article  CAS  PubMed  Google Scholar 

  90. Palani HK, Arunachalam AK, Yasar M, Venkatraman A, Kulkarni U, Lionel SA, et al. Decentralized manufacturing of anti CD19 CAR-T cells using CliniMACS Prodigy®: real-world experience and cost analysis in India. Bone Marrow Transpl. 2023;58:160–7.

    Article  Google Scholar 

  91. Bustamante-Ogando JC, Hernández-López A, Galván-Díaz C, Rivera-Luna R, Fuentes-Bustos HE, Meneses-Acosta A, Olaya-Vargas A. Childhood leukemias in Mexico: towards implementing CAR-T cell therapy programs. Front Oncol. 2023;13:1304805.

    Article  CAS  PubMed  Google Scholar 

  92. Tang JY, Pui CH. The international collaboration to save children with cancer. JAMA Oncol. 2021;7:499–500.

    Article  PubMed  Google Scholar 

  93. Burki TK. WHO and St Jude Children’s Research Hospital announce childhood cancer medicines initiative. Lancet Oncol. 2022;23:e17.

    Article  PubMed  Google Scholar 

  94. Metzger ML, Howard SC, Fu LC, Pena A, Stefan R, Hancock ML, et al. Outcome of childhood acute lymphoblastic leukaemia in resource-poor countries. Lancet. 2003;362:706–8.

    Article  PubMed  Google Scholar 

  95. Alam A, Kumar A. Prevalence, predictors, causes of treatment refusal and abandonment in children with acute lymphoblastic leukaemia over 18 years in North India. Treatment phase affecting factors: A step towards better focussed counselling. Cancer Epidemiol. 2018;57:53–59.

    Article  PubMed  Google Scholar 

  96. Howard SC, Davidson A, Luna-Fineman S, Israels T, Chantada G, Lam CG, et al. A framework to develop adapted treatment regimens to manage pediatric cancer in low- and middle-income countries: the Pediatric Oncology in Developing Countries (PODC) Committee of the International Pediatric Oncology Society (SIOP). Pediatr Blood Cancer. 2017;64:e26879.

  97. Frech S, Morton Doherty R, Lesmes Duque MC, Ramirez O, Pomata A, Samudio A, et al. C/Can city engagement process: an implementation framework for strengthening cancer care in cities in low- and middle-income countries. JCO Glob Oncol. 2021;7:901–16.

    Article  PubMed  Google Scholar 

  98. Atun R, Bhakta N, Denburg A, Frazier AL, Friedrich P, Gupta S, et al. Sustainable care for children with cancer: a Lancet Oncology Commission. Lancet Oncol. 2020;21:e185–224.

    Article  PubMed  Google Scholar 

  99. Rodriguez-Galindo C, Friedrich P, Alcasabas P, Antillon F, Banavali S, Castillo L, et al. Toward the cure of all children with cancer through collaborative efforts: pediatric oncology as a global challenge. J Clin Oncol. 2015;33:3065–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ortiz R, Vasquez L, Giri B, Kapambwe S, Dille I, Mahmoud L, et al. Developing and sustaining high-quality care for children with cancer: the WHO Global Initiative for Childhood Cancer. Rev Panam Salud Publica. 2023;47:e164.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Maloney KW, Devidas M, Wang C, Mattano LA, Friedmann AM, Buckley P, et al. Outcome in children with standard-risk B-cell acute lymphoblastic leukemia: results of Children’s Oncology Group trial AALL0331. J Clin Oncol. 2020;38:602–12.

    Article  CAS  PubMed  Google Scholar 

  102. Toft N, Birgens H, Abrahamsson J, Griškevičius L, Hallböök H, Heyman M, et al. Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia. Leukemia. 2018;32:606–15.

    Article  CAS  PubMed  Google Scholar 

  103. Vora A, Goulden N, Wade R, Mitchell C, Hancock J, Hough R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2013;14:199–209.

    Article  CAS  PubMed  Google Scholar 

  104. Vora A, Goulden N, Mitchell C, Hancock J, Hough R, Rowntree C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15:809–18.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Cancer Center Support (CORE) Grant (CA021765) from the National Cancer Institute and by the American Lebanese Syrian Associated Charities (ALSAC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank Keith A. Laycock, PhD, ELS, for scientific editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PR and HI conceptualized the manuscript and contributed to manuscript preparation.

Corresponding author

Correspondence to Hiroto Inaba.

Ethics declarations

Competing interests

HI receives research grants from Servier, Amgen, and Incyte and consulting fees from Jazz Pharmaceuticals, Servier, and Amgen. PR has nothing to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rujkijyanont, P., Inaba, H. Diagnostic and treatment strategies for pediatric acute lymphoblastic leukemia in low- and middle-income countries. Leukemia (2024). https://doi.org/10.1038/s41375-024-02277-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41375-024-02277-9

Search

Quick links