Tectonics articles within Nature Communications

Featured

  • Article
    | Open Access

    This paper shows that faults comprised of heterogeneously distributed materials, as is typical for tectonic faults in nature, are weaker and more unstable than equivalent faults where the materials are homogeneously mixed together.

    • John D. Bedford
    • , Daniel R. Faulkner
    •  & Nadia Lapusta
  • Article
    | Open Access

    The timing and nature of the first plate tectonic processes on Earth is disputed. Here the authors present a seismic reflection image of a suture zone that extends to 60 km depth beneath the ancient Yilgarn region of western Australia, suggesting that plate subduction occurred as early as 2.8 billion years ago

    • Andrew J. Calvert
    • , Michael P. Doublier
    •  & Samantha E. Sellars
  • Article
    | Open Access

    The ultimate driver of ultraslow spreading ridges is unknown. Here the authors use spreading rates derived directly from isotopic ages of seafloor samples to link magmatic and amagmatic segments with thermochemical variations in the upper mantle.

    • John M. O’Connor
    • , Wilfried Jokat
    •  & Anthony A. P. Koppers
  • Review Article
    | Open Access

    New observations of volcanic and magmatic activity in Africa are changing our views of continental rifting and raising awareness of the associated hazards. However, despite a shift from crisis response to reducing disaster risks, limited capacity means mitigating geohazards remains challenging.

    • Juliet Biggs
    • , Atalay Ayele
    •  & Tim J. Wright
  • Article
    | Open Access

    A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously recognized.

    • Bertrand Rouet-Leduc
    • , Romain Jolivet
    •  & Claudia Hulbert
  • Article
    | Open Access

    The role of Southern Ocean gateways contributing to the Eocene-Oligocene climate transition is still debated. Here, the authors present high-resolution ocean simulations to show that gateways opening led to a reorganization of ocean circulation, heat transport and Antarctic surface water cooling.

    • Isabel Sauermilch
    • , Joanne M. Whittaker
    •  & Joseph H. LaCasce
  • Article
    | Open Access

    How far back in time plate tectonics operated on Earth is debated because of a paucity of geological evidence for horizontal plate motions. Here the authors show that plates moved laterally by >3500 kilometres 2.7–2.5 billion years ago, demonstrating plate tectonics in the Archean Eon, when life developed on Earth.

    • Yating Zhong
    • , Timothy Kusky
    •  & Hao Deng
  • Article
    | Open Access

    In ultraslow-spreading ridges intermittent detachment faulting could contribute to discontinuous magmatic accretion supporting the development of massive sulfide deposits. Here the authors using a multi-scale magnetic survey of the Southwest Indian Ridge constrain that an episode of detachment faulting took place 0.7-1.48 Ma, with the present fault active since 0.33 Ma.

    • Tao Wu
    • , Maurice A. Tivey
    •  & Yunlong Liu
  • Article
    | Open Access

    Episodic magmatism of the early Andes is the result of a complex interplay between mantle, crust, slab and sediment contributions that can be traced using zircon chemistry. An external (tectonic) model is argued for the episodic plutonism in this extensional continental arc.

    • José Joaquín Jara
    • , Fernando Barra
    •  & Diego Morata
  • Article
    | Open Access

    We discover a pervasive subduction influence in the Arctic, Atlantic and Indian mantle, which is nearly absent in the Pacific mantle. Such a hemispheric-scale upper mantle heterogeneity reflects the control of a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr.

    • A. Y. Yang
    • , C. H. Langmuir
    •  & Z. Chen
  • Article
    | Open Access

    Seismic imaging of subducted plates offers a way to improve plate tectonic reconstructions. Here, Braszus et al. use new ocean-bottom seismometer data from the Lesser Antilles to locate subducted spreading centres and faults thus providing a new understanding of the evolution of the Caribbean plate.

    • Benedikt Braszus
    • , Saskia Goes
    •  & Marjorie Wilson
  • Article
    | Open Access

    This paper placed the identified Mariana type ophiolite within a global tectonic re-organization at ca. 530-520 Ma. Similar ophiolites, together with other geological and chemical proxies, newly constrained the timing of establishment of modern plate tectonics, along with its links to surficial changes that characterize the contemporary Earth.

    • Jinlong Yao
    • , Peter A. Cawood
    •  & Peng Wang
  • Article
    | Open Access

    “Earth degassing is a critical carbon source, but its contribution to Cenozoic atmospheric CO2 variations is not well known. Here, the authors analyse CO2 fluxes on the Tibetan Plateau and suggest that the India-Asia collision was the primary driver of changes in atmospheric CO2 over the past 65 Ma.”

    • Zhengfu Guo
    • , Marjorie Wilson
    •  & Jiaqi Liu
  • Article
    | Open Access

    There is a lot of uncertainty about what Earth’s climate and geography were like in the early Cambrian, when animal life diversified throughout the oceans. Here we show that numeric comparisons of model simulations and climatically influenced rocks can help constrain geography and climate during this time.

    • Thomas W. Wong Hearing
    • , Alexandre Pohl
    •  & Thijs R. A. Vandenbroucke
  • Article
    | Open Access

    Why Earth’s crust only started becoming widely preserved in the Eoarchaean, 500 Ma after planetary accretion, is poorly understood. Here, the authors document a shift to juvenile magmatic sources in the early Eoarchaean, linking crustal preservation to the formation of stabilising melt-depleted mantle.

    • Jacob A. Mulder
    • , Oliver Nebel
    •  & Timothy J. Ivanic
  • Article
    | Open Access

    Here, based on earthquake data, vertical gravity gradient data and high-resolution bathymetry, the authors show that the Red Sea is not in transition from rifting to spreading as previously proposed. They instead suggest it to be a mature ocean basin in which continuous seafloor spreading began quasi-instantaneously along its entire length around 13 Ma ago.

    • Nico Augustin
    • , Froukje M. van der Zwan
    •  & Bryndís Brandsdóttir
  • Article
    | Open Access

    Tectonomagmatic conditions in the Precambrian were hypothesized to be unfavorable for porphyry Cu deposit formation. Here, the authors show that metallogenic processes typify Phanerozoic porphyry Cu deposits operated by ~1.88 Ga, reflecting modification of mantle lithosphere by oxidized slab-derived fluids at that time.

    • Xuyang Meng
    • , Jackie M. Kleinsasser
    •  & Richard A. Stern
  • Article
    | Open Access

    This study shows how seismic and aseismic events are related in Mexico between 2017 and 2019. Based on a series of observations and models, the study suggests that the Mw 8.2 intraslab earthquake of 8 September 2017 severely altered the mechanical properties of the plate interface, facilitating the interaction between the events and disrupting the slow slip cycles at a regional scale.

    • V. M. Cruz-Atienza
    • , J. Tago
    •  & E. Kazachkina
  • Article
    | Open Access

    Here, the authors follow a new approach using analytic solutions for Poiseuille-Couette channel flow to compute asthenospheric viscosities under the Caribbean. Active asthenospheric flow observed under the Caribbean contradicts the traditional view that the asthenosphere is only a passive lubricating layer for Earth’s tectonic plates.

    • Yi-Wei Chen
    • , Lorenzo Colli
    •  & Hejun Zhu
  • Article
    | Open Access

    The interplay between continental subduction exhumation dynamics and the obduction of ophiolite sheets remains enigmatic. Here, the authors show that the extrusion of the subducted continental upper crust triggers the necking and breaking of the oceanic upper plate and leads to far-travelled ophiolite sheet emplacement.

    • Kristóf Porkoláb
    • , Thibault Duretz
    •  & Ernst Willingshofer
  • Article
    | Open Access

    The authors here present a multi-lake paleoseismological approach to evaluate the role of earthquakes in causing a spatio-temporal cluster of large, prehistoric rockslides between 3000 and 4200 years ago in the Eastern European Alps and for which the triggering mechanisms are still debated.

    • Patrick Oswald
    • , Michael Strasser
    •  & Jasper Moernaut
  • Article
    | Open Access

    The nature and evolution of Earth’s crust during the Hadean and Eoarchean is largely unknown due to the lack of preserved material from this period. Here, the authors document a period of crustal rejuvenation between 3.2 and 3.0 Ga, coincident with peak mantle potential temperatures that imply greater degrees of mantle melting and injection of hot mafic-ultramafic magmas into older Hadean-to-Eoarchean felsic crust at this time.

    • C. L. Kirkland
    • , M. I. H. Hartnady
    •  & J. A. Hollis
  • Article
    | Open Access

    Knowledge of shear-wave anisotropy is important to understanding the structure and dynamics of the subduction zone mantle wedge. Here, the authors find unambiguous evidence that forearc anisotropy resides in the upper-plate crust, while weak anisotropy in the most seaward part of the mantle wedge indicates decoupling from the slab

    • Naoki Uchida
    • , Junichi Nakajima
    •  & Youichi Asano
  • Article
    | Open Access

    The transition from wide continental rift to continental break-up remains enigmatic. Here, the authors show that northern margin of the South China Sea records the transition between wide continental rift to a highly extended continental margin, with strikingly similar structures and metamorphic core complexes to those described from the North American Cordillera and the Aegean.

    • Hongdan Deng
    • , Jianye Ren
    •  & Pan Luo
  • Article
    | Open Access

    Here, the authors combine bathymetry and sediment echosound data to present a submarine, volcanic map of the Tristan de la Cunha region. They find that the youngest volcanic expression of the Tristan de la Cunha mantle plume is currently located to the (south-) west of the island.

    • Wolfram H. Geissler
    • , Paul Wintersteller
    •  & Wilfried Jokat
  • Article
    | Open Access

    Although the surface deformation of tectonic plate boundaries is well determined by geological and geodetic measurements, the pattern of flow below the lithosphere remains poorly constrained. Here, the author finds that major earthquakes in California have occurred above the regions of current plastic strain accumulation in the mantle.

    • Sylvain Barbot
  • Article
    | Open Access

    Geological sources of H2 and abiotic CH4 have had a critical role in the evolution of life and sustainability of the deep subsurface biosphere, yet the origins of these sources remain largely unconstrained. Here the authors show that deep serpentinization (40–80 km) during subduction generates significant amounts of H2 and abiotic CH4, potentially providing energy to the overlying subsurface biosphere.

    • A. Vitale Brovarone
    • , D. A. Sverjensky
    •  & I. Daniel
  • Article
    | Open Access

    Plate tectonics necessitates mantle recycling throughout Earth’s history, yet direct geochemical evidence for mantle reprocessing remains elusive. Here, the authors present evidence of recycled supra-subduction zone mantle wedge peridotite dredged from the Mid-Atlantic Ridge near 16°30′N.

    • B. M. Urann
    • , H. J. B. Dick
    •  & J. F. Casey
  • Article
    | Open Access

    Regions of the subducting oceanic crust are often considered to be overpressured, owing to fluid trapped beneath an impermeable seal along the overlying inter-plate boundary. Here, the authors show that slow slip earthquakes at the Cascadia subduction zone occur immediately below a 6-10 km-thick shear zone, in which slab-derived fluids are likely trapped at near-lithostatic pore pressures.

    • Andrew J. Calvert
    • , Michael G. Bostock
    •  & Martyn J. Unsworth
  • Perspective
    | Open Access

    Despite numerous advances in our understanding of subduction since the theory of plate tectonics was established, the mechanisms of subduction zone initiation remain highly controversial. Here, the authors present a transdisciplinary and expandable community database of subduction zone initiation events in the last 100 Ma, which establishes a clear direction for future research.

    • Fabio Crameri
    • , Valentina Magni
    •  & Marcel Thielmann
  • Article
    | Open Access

    How Earth’s lithosphere first divided into tectonic plates remains uncertain. Here, the authors use 3D spherical shell models to demonstrate that anticipated warming of the early lithosphere should lead to thermal expansion and the initiation of a global network of rifts, dividing the lithosphere into tectonic plates.

    • C. A. Tang
    • , A. A. G. Webb
    •  & T. T. Chen
  • Article
    | Open Access

    The Central Atlantic Magmatic Province is the most aerially extensive magmatic event in Earth’s history, yet few constraints exist on the volumes of intrusions at depth. Here, the authors find limited intrusive volumes beneath the South Georgia Rift, consistent with modest potential mantle temperatures (<1500 °C) related to syn-rift decompression melting.

    • R. E. Marzen
    • , D. J. Shillington
    •  & S. H. Harder
  • Article
    | Open Access

    One of the largest continental microplates on Earth is situated in the center of the East African Rift System, and oddly, the Victoria microplate rotates counterclockwise with respect to the neighboring African tectonic plate. Here, the authors' modelling results suggest that Victoria microplate rotation is caused by edge-driven lithospheric processes related to the specific geometry of rheologically weak and strong regions.

    • Anne Glerum
    • , Sascha Brune
    •  & Manfred R. Strecker
  • Matters Arising
    | Open Access

    Recently, Pandey et al proposed relict subduction initiation occurred along a passive margin in the northwest Indian Ocean. Here, Clift et al question the evidence for subduction initiation, suggesting that simpler rifting-related processes can more simply explain the available data for the Laxmi Basin.

    • Peter D. Clift
    • , Gérôme Calvès
    •  & Tara N. Jonell
  • Matters Arising
    | Open Access

    Recently, Pandey et al. proposed relict subduction initiation occurred along a passive margin in the northwest Indian Ocean, however, Clift et al. questioned their evidence for subduction initiation, suggesting that simpler rifting-related processes could more simply explain the available data. Here, Pandey et al. reply to Clift et al.’s comment, and argue that geochemical and isotope data for Laxmi basin lavas distinctly imply relict subduction initiation.

    • Dhananjai K. Pandey
    • , Anju Pandey
    •  & Scott A. Whattam
  • Article
    | Open Access

    Feldspars are stable at pressures up to 3 GPa along the mantle geotherm, but they can persist metastably at higher pressures at colder conditions. Here, above 10 GPa the authors find  new high-pressure polymorphs of feldspars that could persist at depths corresponding to the Earth’s upper mantle, potentially influencing the dynamics and fate of cold subducting slabs.

    • Anna Pakhomova
    • , Dariia Simonova
    •  & Leonid Dubrovinsky