Supramolecular chemistry articles within Nature Communications

Featured

  • Article
    | Open Access

    Controlling multiple stereogenic centers in a single molecular scaffold represents a challenge for current switchable asymmetric catalysts. Here, the authors achieve asymmetric stereodivergency by means of a switchable supramolecular helical catalyst allowing all stereoisomers to be obtained with high and similar enantioselectivities.

    • Ran Chen
    • , Ahmad Hammoud
    •  & Matthieu Raynal
  • Article
    | Open Access

    Proton conduction is one of the interesting applications of hydrogen-bonded organic frameworks. Here, the authors report hydrogen-bonded organic framework that can be transformed into glassy state, effectively mitigating grain boundary effects, and significantly enhancing proton conduction performance.

    • Feng-Fan Yang
    • , Xiao-Lu Wang
    •  & Linfeng Liang
  • Article
    | Open Access

    Supramolecular polymer networks have unique and useful properties due to the reversible nature of their cross-links. Here, the authors show that when two distinct supramolecular interaction classes exist within a single cross-link, new functions can result.

    • David J. Lundberg
    • , Christopher M. Brown
    •  & Jeremiah A. Johnson
  • Article
    | Open Access

    Strategies to produce supramolecular glass and the study of its intrinsic structure and mechanical properties remains largely unexplored. Here, the authors prepare a supramolecular glass via the host–guest recognition between methyl-β-cyclodextrin and para-hydroxybenzoic acid with recyclability, compatibility, and thermal processability.

    • Changyong Cai
    • , Shuanggen Wu
    •  & Shengyi Dong
  • Article
    | Open Access

    The efficient encapsulation of guests by coordination cages in the solid state is prevented by their flexibility, dynamicity, and metal-ligand bond reversibility. Here, the authors report coordination cages integrated into poly(ionic liquid)s to control swelling and mechanical properties of the gels and develop efficient and regenerable supramolecular separation materials.

    • Xiang Zhang
    • , Dawei Zhang
    •  & Mingyuan He
  • Article
    | Open Access

    Molecular recognition of proteins is essential for achieving their biological functions but it is challenging to prepare selective protein-binding materials. Here the authors report a method that combines dynamic covalent chemistry and double molecular imprinting to construct protein-recognizing nanoparticles capable of specific inhibition of protein–protein interactions.

    • Avijit Ghosh
    • , Mansi Sharma
    •  & Yan Zhao
  • Article
    | Open Access

    Organic mechanoluminescent materials have potential in a range of applications, but it can be challenging to achieve long-lived emission. Here, the authors report isostructural doping as a strategy to achieve multicolour and high efficiency organic mechanoluminescence, applied in stress sensing.

    • Zongliang Xie
    • , Yufeng Xue
    •  & Bin Liu
  • Article
    | Open Access

    The design of synthetic systems that can sense chemical gradients and respond with directional motility and chemical activity is of interest. Here, the authors realize and control such behaviors in a synthetic system by tailoring multivalent interactions of adenosine nucleotides with catalytic microbeads.

    • Ekta Shandilya
    • , Bhargav Rallabandi
    •  & Subhabrata Maiti
  • Article
    | Open Access

    Crystals are known to have a range of responses to light, but multiple responses in the same material are rare. Here, the authors report different mechanical effects in response to light across three polymorphs as a result of a dimerization reaction.

    • Jiawei Lin
    • , Jianmin Zhou
    •  & Junbo Gong
  • Article
    | Open Access

    The surface charge and ζ-potential of biomolecular condensates is key to their interactions with membranes and proteins. Here, the authors developed a method to determine the ζ-potential of condensates using microelectrophoresis and single-droplet tracking.

    • Merlijn H. I. van Haren
    • , Brent S. Visser
    •  & Evan Spruijt
  • Article
    | Open Access

    Multiple autocatalytic reactions producing thiols are known, but negative feedback loop motifs are unavailable for thiol chemistry. Here, the authors develop a negative feedback loop based on the selenocarbonates, in which thiols induce the release of aromatic selenols that catalyze the oxidation of thiols by organic peroxides.

    • Xiuxiu Li
    • , Polina Fomitskaya
    •  & Sergey N. Semenov
  • Article
    | Open Access

    Supramolecular polymeric materials have exhibited attractive features such as self-healing, reversibility and stimuli-responsiveness but because of the weak bonding nature of most noncovalent interactions, constructing supramolecular polymer materials with high robustness remains challenging. Here, the authors describe the construction of highly robust stimuli-responsive supramolecular polymer networks by using only a tiny amount of metallacycles as the supramolecular crosslinkers.

    • Lang He
    • , Yu Jiang
    •  & Shijun Li
  • Article
    | Open Access

    Assembly of block copolymers can be controlled to give varying morphologies and functionalities, but there are still aspects of the process that are not well understood. Here, the authors report convoluted self-assembly behaviours of block copolymers with discotic liquid crystalline moieties.

    • Huanzhi Yang
    • , Yunjun Luo
    •  & Xiaoyu Li
  • Article
    | Open Access

    The development of supramolecular porous crystalline frameworks with architectures from secondary building units remains challenging. Here, the authors report ammonium node-assembled clusters as supramolecular secondary building units to sustain a body centered cubic hydrogenbonded framework with octahedral cages for haloform encapsulation and reversible photochromism.

    • Xiaojun Ding
    • , Jing Chen
    •  & Gang Ye
  • Article
    | Open Access

    Supramolecular confined catalysis aims to mimic the active pocket of an enzyme to enhance the efficiency and selectivity of catalytic reactions. Here, the authors describe the formation of chiral nanotubes stable in aqueous solution employing a chiral BINOL-phosphate which can accelerate the 3-aza-Cope rearrangement by a nanotubular interior confinement effect.

    • Kang Li
    • , Wei-Min Qin
    •  & Yue-Peng Cai
  • Article
    | Open Access

    Organic co-crystals are useful in the fabrication of functional materials, but it is challenging to achieve structural diversity of co-crystals. Here, the authors report nine sets of macrocycle cocrystals with diverse structures and stoichiometric ratios giving different luminescence properties.

    • Bin Li
    • , Lingling Liu
    •  & Chunju Li
  • Article
    | Open Access

    The interconversion of the two spin isomers of formaldehyd has been studied in the gas phase but has never been observed experimentally in the condensed phase. Here the authors report the encapsulation of formaldehyde inside C60 cages and observe spin-isomer conversion of the formaldehyde guest molecules in the cryogenic solid state.

    • Vijyesh K. Vyas
    • , George R. Bacanu
    •  & Richard J. Whitby
  • Article
    | Open Access

    Globally important BTEX hydrocarbons are separated using a T-shaped host with the shape and crystal tiling characteristics of a pentomino. A strategy based on designing and applying crystalline molecular ominos to perform separations of hydrocarbons and other environmentally-relevant compounds is outlined.

    • Christopher J. Hartwick
    • , Eric W. Reinheimer
    •  & Leonard R. MacGillivray
  • Article
    | Open Access

    By virtue of the rotational motions of interlocked macrocycles, the authors describe a chameleon-like catenane host that can adjust its co-conformation for selective binding to copper(I) or sulfate ion. While the cationic copper(I) complex is achiral, the interlocked rings in the catenane host rotate and re-orient into a chiral co-conformation upon forming the anionic sulfate complex.

    • Yueliang Yao
    • , Yuen Cheong Tse
    •  & Ho Yu Au-Yeung
  • Article
    | Open Access

    Artificial biomolecular condensates are valuable tools to study the design principles of phase separation. Here, the authors demonstrate and characterize a model system of artificial DNA condensates whose kinetic formation and dissolution depends on DNA inputs that activate or deactivate the phase separating DNA subunits.

    • Siddharth Agarwal
    • , Dino Osmanovic
    •  & Elisa Franco
  • Article
    | Open Access

    Structurally coloured composite films are flexible optical materials with potential in a range of applications, but their production is impacted by long time-frames and limited materials. Here, the authors report a method for the production of large scale films by shearing supramolecular composites.

    • Miaomiao Li
    • , Bolun Peng
    •  & Jintao Zhu
  • Article
    | Open Access

    Smart sensors are important components in the development of touchless human-machine interaction systems. Here, the authors describe a smart 3D porous crystalline organic cage-based system that exhibits remarkable responsiveness to fingertip humidity, contributing to the advancement of touchless human-machine interaction technology.

    • Jinrong Wang
    • , Weibin Lin
    •  & Niveen M. Khashab
  • Article
    | Open Access

    The study of cross-catenated metallacages could provide facile insights into achieving more precise control over low-symmetry/high-complexity hierarchical assembly systems but is currently lacking. Here, the authors report a cross-catenane formed between two position-isomeric Pt(II) metallacages in the solid state.

    • Yiliang Wang
    • , Taotao Liu
    •  & Jun Li
  • Article
    | Open Access

    Despite the structural significance of boroxines in different classes of materials, their applicability in aqueous media is limited by their hydrolytic instability. Here, the authors discovered a water-stable boroxine structure with excellent pH stability and water-compatible dynamic covalent bonds.

    • Xiaopei Li
    • , Yongjie Zhang
    •  & Guangyan Qing
  • Article
    | Open Access

    Multifunctional composite hydrogels are promising candidates to develop smart and recyclable electronic components. Here, the authors report a reversible on-demand liquefication and solidification conductive gel formed by the self-assembly of photoresponsive host-guest complexes and MXene nanosheets which can be integrated into traditional solid-state circuits.

    • Yu-Liang Lin
    • , Sheng Zheng
    •  & Jiun-Tai Chen
  • Article
    | Open Access

    The formation of artificial light-harvesting systems with high donor/acceptor ratios for efficient energy transfer remains challenging. Here, the authors describe a polymeric supramolecular column-based light-harvesting system by modular columnar assembly of donor/acceptor chromophores, enabling superior light-harvesting efficiency and dynamic full-color tunable emission.

    • Bin Mu
    • , Xiangnan Hao
    •  & Wei Tian
  • Article
    | Open Access

    Assembly of amyloids is important in neurodegenerative diseases, but there is limited understanding of how supramolecular chirality is controlled. Here, the authors report the design of peptide derivatives that allow chirality inversion at biologically relevant temperatures.

    • Stephen J. Klawa
    • , Michelle Lee
    •  & Ronit Freeman
  • Article
    | Open Access

    To enhance the utility of organic molecular cages (OMCs), the evolution of OMCs into higher-level chiral OMCs with self-similar superstructures is meaningful yet challenging. Here, the authors report a pair of higher-level 3D tri-bladed chiral helical molecular cages, displaying self-similarity in a discrete self-similar superstructure at different levels.

    • Zhen Wang
    • , Qing-Pu Zhang
    •  & Chuan-Feng Chen
  • Article
    | Open Access

    Membrane technology using well-defined pore structure enables high ion purity and recovery but achieving uniform pore structure and effective pore area is challenging. Here the authors introduce dendrimers that self-assemble, facilitating the formation of polyamide nanofilms with well-defined effective pore ranges and uniform pore structures.

    • Bingbing Yuan
    • , Yuhang Zhang
    •  & Q. Jason Niu
  • Article
    | Open Access

    Hydrogen-bonded organic frameworks as stimuli responsive multistate structures show potential in the field of resistive switching. Here, the authors report a 0D+1D hydrogen-bonded polycatenation non-covalent organic framework showing reversible transformation of multistate-structures triggered by electrical field and temperature, enabling reversibly switchable resistive random-access memory and write-once-read-many-times memory behavior.

    • Shimin Chen
    • , Yan Ju
    •  & Zhangjing Zhang
  • Article
    | Open Access

    The synthesis of molecular knots remains challenging. Here, the authors report the synthesis of a chiral molecular trefoil metallaknot by self-assembly which contains only 54 atoms in the backbone.

    • Zhiwen Li
    • , Jingjing Zhang
    •  & Richard J. Puddephatt
  • Article
    | Open Access

    Single crystal X-ray diffraction is one of the most powerful structure elucidation tools, but it’s challenging to determine complex structures. Here the authors report a metal-organic framework for encapsulation and immobilization of various guests using highly ordered internal water network, obtaining high quality atomic-resolution data.

    • Yuki Wada
    • , Pavel M. Usov
    •  & Masaki Kawano
  • Article
    | Open Access

    Assembly is an interesting strategy to build chiral hierarchies with premade properties and functionalities. Here, the authors present assembled chiral hydrogen-bonded organic-inorganic frameworks with dynamical chiroptical activities and employ them as powerful and recoverable platforms for enantioselective recognition of chiral aliphatic substrates.

    • Jun Guo
    • , Yulong Duan
    •  & Yi Liu
  • Article
    | Open Access

    Coacervate droplets are promising protocells that sequester nutrients, but how new peptides could be synthesized inside coacervates remains a mystery. Here, the authors develop redox-active coacervates that facilitate the formation of new peptide bonds.

    • Jiahua Wang
    • , Manzar Abbas
    •  & Evan Spruijt
  • Article
    | Open Access

    Controlling site-selectivity and reactivity in chemical reactions continues to be a key challenge in modern synthetic chemistry. Here, the authors demonstrate the assembly of amino-substituted porphyrins on a water surface into J-aggregate structures in the presence of charged surfactants.

    • Anupam Prasoon
    • , Xiaoqing Yu
    •  & Xinliang Feng
  • Article
    | Open Access

    While heat modification is ubiquitous in biologic systems, it remains a significant challenge in artificial systems. Here the authors demonstrate thermal regulation of conversion between different rigid macrocycle atropisomers and related self-assemblies.

    • Jiaqi Liang
    • , Shuai Lu
    •  & Han-Yuan Gong
  • Article
    | Open Access

    “Cycloparaphenylenes consisting of are cyclic π-conjugated structures presetting interesting physical properties upon functionalization. However, the ring strain and steric hindrance of the substituents hamper the functionalization of small sized cycloparaphenylenes. Here, the authors describe a [6]cycloparaphenylene with twelve methoxy units employed to form a rotaxane with in-plane aromaticity upon oxidation.”

    • Naoki Narita
    • , Yusuke Kurita
    •  & Yoshitaka Tsuchido