Plant development articles within Nature

Featured

  • Article |

    A fundamental question in developmental biology is how cells communicate positional information to pattern the tissues of an organ. Here, the patterning of a plant's xylem tubes, which transport water and solutes from root to shoot, is studied. A new bidirectional signalling pathway is discovered, whereby a transcription factor moves from cell to cell in one direction, and microRNAs move in the other direction. The result is a differential distribution of target mRNA in the vascular cylinder, determining xylem cell types.

    • Annelie Carlsbecker
    • , Ji-Young Lee
    •  & Philip N. Benfey
  • Letter |

    During Arabidopsis embryogenesis, a single cell is specified to become the founder cell of the root meristem — the hypophysis — in response to signals from adjacent cells. Hypophysis specification requires an auxin-responsive transcription factor, MONOPTEROS (MP), which promotes transport of auxin from the embryo to the hypophysis precursor. Here, MP target genes are identified and the means by which they mediate root formation is shown.

    • Alexandra Schlereth
    • , Barbara Möller
    •  & Dolf Weijers
  • Letter |

    During development in Arabidopsis plants, populations of shoot stem cells and root stem cells are established at the embryo's apical and basal poles, respectively. PLETHORA genes are master regulators of root fate, but the regulators of shoot fate were unknown. Here, CLASS III HOMEODOMAIN-LEUCINE ZIPPER genes are identified as master regulators of apical/shoot fate, and are shown to be sufficient to convert the embryonic root pole into a second shoot pole.

    • Zachery R. Smith
    •  & Jeff A. Long