Physical sciences articles within Nature Physics

Featured

  • Article |

    Photoemission experiments demonstrate that the photon number statistics of the exciting light can be imprinted on the emitted electrons, allowing the controlled generation of classical or non-classical electron number statistics of free electrons.

    • Jonas Heimerl
    • , Alexander Mikhaylov
    •  & Peter Hommelhoff
  • Perspective |

    Although topological photonics has been an active field of research for some time, most studies still focus on the linear optical regime. This Perspective summarizes recent investigations into the nonlinear properties of discrete topological photonic systems.

    • Alexander Szameit
    •  & Mikael C. Rechtsman
  • News & Views |

    The shape and trajectory of a crack plays a crucial role in material fracture. High-precision experiments now directly capture this phenomenon, unveiling the intricate 3D nature of cracks.

    • Michael D. Bartlett
  • Article
    | Open Access

    Leggett modes can occur when superconductivity arises in more than one band in a material and represent oscillation of the relative phases of the two superconducting condensates. Now, this mode is observed in Cd3As2, a Dirac semimetal.

    • Joseph J. Cuozzo
    • , W. Yu
    •  & Enrico Rossi
  • Article |

    The occurrence of propagating spiral waves in multicellular organisms is associated with key biological functions. Now this type of wave has also been observed in dense bacterial populations, probably resulting from non-reciprocal cell–cell interactions.

    • Shiqi Liu
    • , Ye Li
    •  & Yilin Wu
  • News & Views |

    Even by shining classical light on a single opening, one can perform a double-slit experiment and discover a surprising variety of quantum mechanical multi-photon correlations — thanks to surface plasmon polaritons and photon-number-resolving detectors.

    • Martijn Wubs
  • Article
    | Open Access

    Experiments probing three-dimensional crack propagation show that the critical strain energy needed to drive a crack is directly proportional to its geodesic length. This insight is a step towards a fully three-dimensional theory of crack propagation.

    • Xinyue Wei
    • , Chenzhuo Li
    •  & John M. Kolinski
  • News & Views |

    Stable regions in four-dimensional phase space have been observed by following the motion of accelerated proton beams subject to nonlinear forces. This provides insights into the physics of dynamical systems and may lead to improved accelerator designs.

    • Giulio Stancari
  • Comment |

    Computing is central to the enterprise of physics but few undergraduate physics courses include it in their curricula. Here we discuss why and how to integrate computing into physics education.

    • Marcos D. Caballero
    •  & Tor Ole B. Odden
  • Comment |

    Injustices and oppression are pervasive in society, including education. An intersectional, equity-oriented approach can help remove systemic obstacles and improve the experience of marginalized people in physics education through decolonial and critical race lenses.

    • Geraldine L. Cochran
    • , Simone Hyater-Adams
    •  & Ramón S. Barthelemy
  • Comment |

    Increasingly, physics graduates take jobs outside academia. Active teaching approaches lead to deeper conceptual understanding and a more varied skill set and are therefore more likely to prepare students for successful careers.

    • Jenaro Guisasola
    •  & Kristina Zuza
  • Perspective |

    Encouraging students to take ownership of their learning can improve their outcomes. This Perspective discusses ways to achieve this in the context of physics education and how digital technology can help Gen Z students in particular.

    • Nam-Hwa Kang
  • Research Briefing |

    The concept of temporal mode-locking has been leveraged to study the interplay between laser mode-locking and photonic lattices that exhibit non-Hermitian topological phenomena. The results suggest new opportunities to study nonlinear and non-Hermitian topological physics as well as potential applications to sensing, optical computing and frequency-comb design.

  • News & Views |

    Excitation of magnons — quanta of spin-waves — in an antiferromagnet can be used for high-speed data processing. The addition and subtraction of two such modes opens up possibilities for magnon-based information transfer in the terahertz spectral region.

    • Brijesh Singh Mehra
    •  & Dhanvir Singh Rana
  • News & Views |

    The Hamiltonian describing a quantum many-body system can be learned using measurements in thermal equilibrium. Now, a learning algorithm applicable to many natural systems has been found that requires exponentially fewer measurements than existing methods.

    • Sitan Chen
  • Article |

    Despite being essential to many applications in quantum science, entanglement can be easily disrupted by decoherence. A protocol based on repetitive quantum error correction now demonstrates enhanced coherence times of entangled logical qubits.

    • Weizhou Cai
    • , Xianghao Mu
    •  & Luyan Sun
  • Perspective |

    Quantum computers promise to efficiently predict the structure and behaviour of molecules. This Perspective explores how this could overcome existing challenges in computational drug discovery.

    • Raffaele Santagati
    • , Alan Aspuru-Guzik
    •  & Clemens Utschig-Utschig
  • Article |

    Mode locking, which is a common technique to produce short laser pulses, is demonstrated in a topological laser.

    • Christian R. Leefmans
    • , Midya Parto
    •  & Alireza Marandi
  • Article
    | Open Access

    Combining multiparticle levitation with cavity control enables cavity-mediated interaction between levitated nanoparticles, whose strength can be tailored via optical detuning and position of the two particles.

    • Jayadev Vijayan
    • , Johannes Piotrowski
    •  & Lukas Novotny
  • Article
    | Open Access

    Photon-mediated entanglement in atomic ensembles coupled to cavities enables the engineering of quantum states with a graph-like entanglement structure. This offers potential advantages in quantum computation and metrology.

    • Eric S. Cooper
    • , Philipp Kunkel
    •  & Monika Schleier-Smith
  • Article |

    Most applications of surface plasmons are based on their near-field properties. These properties are now shown to be governed by nonclassical scattering between multiparticle plasmonic subsystems.

    • Mingyuan Hong
    • , Riley B. Dawkins
    •  & Omar S. Magaña-Loaiza
  • News & Views |

    Electric dipoles are common in insulators, but extremely rare in metals. This situation may be about to change, thanks to flexoelectricity.

    • Gustau Catalan
  • Article |

    Topologically protected hinge modes could be important for developing quantum devices, but electronic transport through those states has not been demonstrated. Now quantum transport has been shown in gapless topological hinge states.

    • Md Shafayat Hossain
    • , Qi Zhang
    •  & M. Zahid Hasan
  • News & Views |

    Ageing is a non-linear, irreversible process that defines many properties of glassy materials. Now, it is shown that the so-called material-time formalism can describe ageing in terms of equilibrium-like properties.

    • Beatrice Ruta
    •  & Daniele Cangialosi
  • News & Views |

    Interacting emitters are the fundamental building blocks of quantum optics and quantum information devices. Pairs of organic molecules embedded in a crystal can become permanently strongly interacting when they are pumped with intense laser light.

    • Stuart J. Masson
  • News & Views |

    Some quantum acoustic resonators possess a large number of phonon modes at different frequencies. Direct interactions between modes similar to those available for photonic devices have now been demonstrated. This enables manipulation of multimode states.

    • Audrey Bienfait