Electronics, photonics and device physics articles within Nature Communications

Featured

  • Article
    | Open Access

    SrTiO3-based heterostructures display intriguing low-temperature transport features. Here the authors study LaAlO3/SrTiO3 nanoscale crossbar devices, revealing correlations between electron pairing without superconductivity, anomalous Hall effect, and electronic nematicity, suggesting a shared microscopic origin.

    • Aditi Nethwewala
    • , Hyungwoo Lee
    •  & Jeremy Levy
  • Article
    | Open Access

    Nonlinear damping is a ubiquitous phenomenon in technological applications involving oscillators, but its origin is sometimes poorly understood. Here, the authors highlight how the interplay between quantum noise and Kerr anharmonicity introduces an effect resembling nonlinear damping.

    • Mario F. Gely
    • , Adrián Sanz Mora
    •  & Gary A. Steele
  • Article
    | Open Access

    Pump-probe techniques—where a system is driven into a nonequilibrium state and then studied as a function of time—provide rich information about the behaviour of charge carriers and their interactions. Here, Yoo et al extend this class of techniques by injecting electrons at a selected energy and observing their decay in energy and momentum space.

    • H. M. Yoo
    • , M. Korkusinski
    •  & R. C. Ashoori
  • Article
    | Open Access

    The authors study transport in Nb-(Pt/Cu)-Nb Josephson junctions (JJ), where Pt/Cu is a Rashba interface. Due to the Rashba–Edelstein effect, a charge current leads to a non-equilibrium spin moment at the Pt/Cu interface, which can be measured from a shift of the Fraunhofer pattern of the JJ.

    • Tapas Senapati
    • , Ashwin Kumar Karnad
    •  & Kartik Senapati
  • Article
    | Open Access

    Previous work on charge Kondo circuits, in which a spin is formed by two degenerate charge states of a metallic island, has been limited to transport measurements of multi-channel Kondo problems. Piquard et al. use thermodynamic measurements via a charge sensor to study the evolution of a single Kondo impurity.

    • C. Piquard
    • , P. Glidic
    •  & F. Pierre
  • Article
    | Open Access

    The authors demonstrate a very stable yet broadly tunable photonic THz source, characterized from 2 GHz to 1.4 THz. A very narrow Lamb dip feature is observed in a water absorption line, showcasing its potential for sub-kHz resolution spectroscopy.

    • Léo Djevahirdjian
    • , Loïc Lechevallier
    •  & Samir Kassi
  • Article
    | Open Access

    Topological spin textures, such as skyrmions and antiskyrmions are of interest for use in information storage, owing to their inherent robustness. Critical to this use is the ability to manipulate these spin textures. Here, Yasin et al. demonstrate heat current driven transformation of a topological spin texture in a ferromagnet at room temperature.

    • Fehmi Sami Yasin
    • , Jan Masell
    •  & Xiuzhen Yu
  • Article
    | Open Access

    The authors study Andreev bound states (ABSs) in 3-terminal InAs/Al Josephson-junction devices. They find signatures of hybridization between two ABSs, with band structure tunable by electric currents that generate magnetic fluxes threading superconducting loops in the device.

    • Marco Coraiola
    • , Daniel Z. Haxell
    •  & Fabrizio Nichele
  • Article
    | Open Access

    Here, the authors theoretically predict the formation of synergistic correlated and topological states in Coulomb-coupled and gate-tunable graphene/insulator heterostructures, proposing a number of promising substrate candidates and a possible explanation for recent experimental observations in graphene/CrOCl heterostructures.

    • Xin Lu
    • , Shihao Zhang
    •  & Jianpeng Liu
  • Article
    | Open Access

    Designing high efficient optoelectronic memory remains a challenge. Here, the authors report a novel optoelectronic memory device based on a photosensitive dielectric that is an insulator in dark and a semiconductor under irradiation with multilevel storage ability, low energy consumption and good compatibility.

    • Rui Zhu
    • , Huili Liang
    •  & Zengxia Mei
  • Article
    | Open Access

    Many proposed spintronic devices, where spin, rather than charge is used for information processing, rely on the combination of multiple materials, for example, heavy metals and magnetic materials in spin-orbit torque devices. Here, Gao et al. show how the interface between a ferromagnet and a semimetal, Ni81Fe19/Bi0.1Sb0.9, can result in a barrier-mediated spin-orbit torques

    • Tenghua Gao
    • , Alireza Qaiumzadeh
    •  & Kazuya Ando
  • Article
    | Open Access

    The scattering of light by small particles plays a central role in a myriad of fields. Here, the authors demonstrate a super dipole resonance that arises when two resonant modes of a small particle interfere, overcoming a widely accepted limitation to the cross section.

    • Adrià Canós Valero
    • , Hadi K. Shamkhi
    •  & Alexander S. Shalin
  • Article
    | Open Access

    Smooth topological photonic interfaces lead to less localized boundary modes which improves their guiding characteristics in both spin- and valley Hall metasurfaces. The modes become insensitive to the lattice details, showcasing improved bandgap crossing and longer propagation distances.

    • Anton Vakulenko
    • , Svetlana Kiriushechkina
    •  & Alexander B. Khanikaev
  • Article
    | Open Access

    Owing to the nonequilibrium nature, photonic topological phenomena can involve multiple band gaps. Here the authors report on the discovery of a class of hybrid topological photonic crystals that host quantum anomalous Hall and valley Hall phases simultaneously.

    • Yanan Wang
    • , Hai-Xiao Wang
    •  & Guang-Yu Guo
  • Article
    | Open Access

    The practical device application of transition-metal dichalcogenide superconductors (TMDSCs) is limited by their environmental instability. Here, the authors report a generic, non-destructive, and scalable strategy to fabricate TMDSC nanocircuits via the topotactic conversion of prepatterned metallic precursors.

    • Xiaohan Wang
    • , Hao Wang
    •  & Peiheng Wu
  • Article
    | Open Access

    The bulk photovoltaic effect (BPVE) is a nonlinear optical effect offering a promising approach to overcome the limitations of conventional photovoltaics. Here, the authors report the observation of BPVE-induced photocurrents at the edges of 2D semiconductors embedded in various van der Waals heterostructures.

    • Zihan Liang
    • , Xin Zhou
    •  & Xiaolong Chen
  • Article
    | Open Access

    Metallic resistance of two-dimensional electron gases normally increases with temperature increasing. Here, the authors find a resistance decrease with increasing temperature at very low temperatures in two-dimensional electron metal described by Fermi liquid theory.

    • Sujatha Vijayakrishnan
    • , F. Poitevin
    •  & G. Gervais
  • Article
    | Open Access

    In some magnetic materials, it is possible to magnetize or demagnetize the system on extremely short timescales. The angular momentum carried by the magnetic state must be generated or dissipated. Here, Kang et al find a significant correlation between spin current and the magnetization dynamics in the ultrafast magnetization processes, implying angular momentum transfer from electrons to magnons.

    • Kyuhwe Kang
    • , Hiroki Omura
    •  & Gyung-Min Choi
  • Article
    | Open Access

    Removing excess energy (cooling) and reducing noise in superconducting quantum circuits is central to improved coherence. Lucas et al. demonstrate cooling of a superconducting resonator and its noisy environment to sub-mK temperatures by immersion in liquid 3He.

    • M. Lucas
    • , A. V. Danilov
    •  & S. E. de Graaf
  • Article
    | Open Access

    Absorption, transmission and reflection are three processes characterizing optical devices. Absorption allows for signal conversion and transmission is important for signal transfer, however, reflection is frequently detrimental to device performance. Here, Qian et al demonstrate a magnonic device with controllable absorption and transmission while maintain zero reflection.

    • Jie Qian
    • , C. H. Meng
    •  & C. -M. Hu
  • Article
    | Open Access

    The proximity effect in semiconductor-superconductor nanowires is expected to generate an induced gap in the semiconductor. Here, the authors study the superconducting proximity effect in InSb nanowires with an Al/Pt shell, demonstrating control of the induced gap using electric and magnetic fields.

    • Nick van Loo
    • , Grzegorz P. Mazur
    •  & Leo P. Kouwenhoven
  • Article
    | Open Access

    Designing efficient selector devices remains a challenge. Here, the authors propose a CuAg alloy-based selector with excellent ON/OFF ratio and thermal stability. It can effectively suppress the sneak-path current in 1S1R arrays, making it suitable for storage class memory and neuromorphic computing applications.

    • Xi Zhou
    • , Liang Zhao
    •  & Dongdong Li
  • Article
    | Open Access

    In a magneto-electric material, the magnetic and electric properties are coupled. This coupling allows the magnetic order to be controlled by electric stimuli, making magnetoelectric materials promising candidates for new data storage technologies. Here Gu et al demonstrate a magnetoelectric effect in a van der Waals antiferromagnetic CrOCl which persists down to monolayer, and using this realize a multi-state data storage device.

    • Pingfan Gu
    • , Cong Wang
    •  & Yu Ye
  • Article
    | Open Access

    Non-reciprocal critical current in a Josephson junction device is known as the Josephson diode effect. Here, the authors observe such an effect in 3-terminal Josephson devices based on InAs two-dimensional electron gas proximitized by an epitaxial Al layer.

    • Mohit Gupta
    • , Gino V. Graziano
    •  & Vlad S. Pribiag
  • Article
    | Open Access

    Electrically switching perpendicular magnetized ferromagnets using spin-orbit torques without assisting magnetic fields is a major goal for spintronics. Recently, several works have proposed using out-of-plane spin polarized currents to achieve this, but these rely on antiferromagnetic metals with low Neel temperatures. Here, Wang et al show that such out-of-plane spin polarization driven switching can be achieved using the interface of an antiferromagnetic insulator and a heavy metal.

    • Mengxi Wang
    • , Jun Zhou
    •  & Yong Jiang
  • Article
    | Open Access

    Emission enhancement and extraction from quantum emitters is a major challenge for photon sources in e.g. quantum photonic networks. Here the authors propose a broadband waveguide platform which allows to boost, extract, and guide quantum emission within integrated photonic networks.

    • Nicholas A. Güsken
    • , Ming Fu
    •  & Rupert F. Oulton
  • Article
    | Open Access

    Multimodal cognitive computing task is an important research content in the field of AI. Here, the authors propose an efficient sensory memory processing system, which can process sensory information and generate synapse-like and multiwavelength light-emitting output for efficient multimodal information recognition.

    • Liuting Shan
    • , Qizhen Chen
    •  & Huipeng Chen
  • Article
    | Open Access

    van der Waals magnetic materials, which retain magnetism down to a single two-dimensional layer of atoms, have great technological potential for spin-based information processing, however, typical approaches to measure their spin dynamics are often hampered by the small number of spins in a single atomic layer compared to three dimensional materials. Here, Zollitsch et al present a methodology for the detection of spin dynamics in van der Waals magnets via photon-magnon coupling between it and a superconducting resonator, with potential to resolve spin dynamics down to a single monolayer.

    • Christoph W. Zollitsch
    • , Safe Khan
    •  & Hidekazu Kurebayashi
  • Review Article
    | Open Access

    The lack of a standardized approach for the characterization of the performance of 2D photodetectors represents an important obstacle towards their industrialization. Here, the authors propose practical guidelines to characterize their figures of merit and analyse common situations where their performance can be misestimated.

    • Fang Wang
    • , Tao Zhang
    •  & Weida Hu
  • Article
    | Open Access

    Superconductivity has been discovered in atomically thin two-dimensional van der Waals materials by resistance measurements, but magnetic measurements are lacking. Here, the authors use a micron-scale SQUID magnetometer to measure the superfluid response of exfoliated MoS2.

    • Alexander Jarjour
    • , G. M. Ferguson
    •  & Katja C. Nowack
  • Article
    | Open Access

    The device efficiency of organic solar cells is usually limited by the inherent energy loss during carrier transport. Here, authors integrate bulk heterojunction organic photovoltaic with vertical field effect transistor, leading to reduced energy loss below 0.2 eV as controlled by the gate voltage.

    • Xiaomin Wu
    • , Changsong Gao
    •  & Huipeng Chen
  • Article
    | Open Access

    The authors combined optical traps and frequency combs to create new acoustic technology – a mechanical frequency comb. The generation of this comb does not require any precision control, making it uniquely positioned for sensing, metrology, and quantum technology.

    • Matthijs H. J. de Jong
    • , Adarsh Ganesan
    •  & Richard A. Norte
  • Article
    | Open Access

    Previous demonstrations of electrically and optically detected magnetic resonance in OLED materials have established these systems as promising candidates for magnetic field sensing. Here the authors present an integrated OLED-based device for magnetic field imaging with sub-micron resolution.

    • Rugang Geng
    • , Adrian Mena
    •  & Dane R. McCamey
  • Article
    | Open Access

    Quantum sensors based on NV centers in diamond are well established, however the sensitivity of detection of high-frequency radio signals has been limited. Here the authors use nanoscale field-focusing to enhance sensitivity and demonstrate ranging for GHz radio signals in an interferometer set-up.

    • Xiang-Dong Chen
    • , En-Hui Wang
    •  & Fang-Wen Sun
  • Article
    | Open Access

    Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed.

    • Daehun Lee
    • , Shahin Jahanbani
    •  & Keji Lai