Electrochemistry articles within Nature Materials

Featured

  • Article |

    Ion exchange is a powerful method to access metastable materials for energy storage, but identifying lithium and sodium interchange in layered oxides remains challenging. Using such model materials, vacancy level and corresponding lithium preference are shown to be crucial for ion exchange pathway accessibility.

    • Yu Han
    • , Weihang Xie
    •  & Chong Liu
  • Article |

    Fast charging is driving extensive research on enhanced electrodes for high-performance electrochemical capacitors and micro-supercapacitors. Thick ruthenium nitride pseudocapacitive films are shown to exhibit enhanced capacitance with a time constant of less than 6 s.

    • Huy Dinh Khac
    • , Grace Whang
    •  & Christophe Lethien
  • Article
    | Open Access

    Although silicon anodes are promising for solid-state batteries, they still suffer from poor electrochemical performance. Chemo-mechanical failure mechanisms of composite Si|Li6PS5Cl and solid-electrolyte-free silicon anodes are now revealed and should help in designing improved electrodes.

    • Hanyu Huo
    • , Ming Jiang
    •  & Jürgen Janek
  • Article
    | Open Access

    Hydrogen produced by water splitting using renewable electricity is key to achieve net-zero carbon emissions. Decoupling hydrogen and oxygen evolution reactions during electrolysis is attractive but efficiency and operational challenges remain. A process producing hydrogen and oxygen in separate cells and supporting continuous operation in a membraneless system is now proposed.

    • Ilya Slobodkin
    • , Elena Davydova
    •  & Avner Rothschild
  • News & Views |

    Using an electrochemical continuous flow cell, nitrogen reduction to ammonia is rigorously demonstrated through a calcium-mediated approach.

    • Michael A. Yusov
    •  & Karthish Manthiram
  • Article |

    Liquid electrolytes in batteries are considered to be macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures. A micelle-like structure in a localized high-concentration electrolyte for which the solvent acts as a surfactant is reported.

    • Corey M. Efaw
    • , Qisheng Wu
    •  & Bin Li
  • Article |

    The production of ammonia via the Haber–Bosch process is carbon-intensive and centralized, but electrochemical methods such as lithium-mediated processes in organic electrolytes could enable decentralized production using renewable energy. Calcium is now shown to mediate nitrogen reduction for ammonia synthesis.

    • Xianbiao Fu
    • , Valerie A. Niemann
    •  & Ib Chorkendorff
  • Article |

    Solid polymer electrolytes are crucial for the development of lithium batteries, but their lower ionic conductivity compared with liquid/ceramics at room temperature limits their practical use. Precise positioning of designed repeating units in alternating polymer sequences now allows the Li+ conductivity to be tuned by up to three orders of magnitude.

    • Shantao Han
    • , Peng Wen
    •  & Mao Chen
  • Article |

    Lithium-rich nickel manganese cobalt oxide cathodes are widely explored due to their high capacities related to their anionic redox chemistry. A compositional optimization pathway for these materials investigating the variation of using cobalt and nickel now provides valuable guidelines for future high-capacity cathode design.

    • Biao Li
    • , Zengqing Zhuo
    •  & Jean-Marie Tarascon
  • Article |

    Polyethylene terephthalate (PET) tape is widely used for lithium-ion batteries but its chemical stability has been largely overlooked. Reversible self-discharge is now shown to be virtually eliminated in LiFePO4–graphite cells by replacing PET with polypropylene jellyroll tape.

    • Anu Adamson
    • , Kenneth Tuul
    •  & Michael Metzger
  • News & Views |

    By tracking the electrochromic doping front, a hole-limited electrochemical doping mechanism is discovered in organic mixed ionic–electronic conductors.

    • Ruiheng Wu
    • , Dilara Meli
    •  & Jonathan Rivnay
  • Article |

    The development of solid-state Li-metal batteries has been limited by Li plating and stripping rates and the formation of dendrites at relevant current densities. Single-phase mixed ion- and electron-conducting garnet with comparable Li-ion and electronic conductivities is now proposed to tackle these issues.

    • George V. Alexander
    • , Changmin Shi
    •  & Eric D. Wachsman
  • Article
    | Open Access

    Electrochemical doping is assumed to be limited by ion motion due to large mass in mixed ionic-electronic conductors. Here, the authors reveal in a typical polythiophene that electrochemical doping speeds are limited by poor hole transport at low doping levels, leading to much slower switching speeds than expected.

    • Scott T. Keene
    • , Joonatan E. M. Laulainen
    •  & George G. Malliaras
  • Article |

    Surface strain can be used in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites, but in situ or operando strain measurements can be challenging. Coherent diffraction now allows strain inside individual Pt nanoparticles to be mapped and quantified under electrochemical control.

    • Clément Atlan
    • , Corentin Chatelier
    •  & Marie-Ingrid Richard
  • Article |

    The electric field created at an electrode–electrolyte interface can polarize the electrode’s surface and nearby molecules. Although its effect can be countered by an applied potential, quantifying the value of this potential is difficult. An optical method for determining the potential of zero charge at an electrochemical interface is now presented.

    • Pengtao Xu
    • , Alexander D. von Rueden
    •  & Jin Suntivich
  • Article |

    High-Ni-content layered cathodes are promising for lithium-ion batteries, but investigating their delithiation-induced phase boundaries is challenging. Intralayer transition motifs at complex phase boundaries in these high-Ni electrodes are now resolved using deep-learning-aided super-resolution electron microscopy.

    • Chunyang Wang
    • , Xuelong Wang
    •  & Huolin L. Xin
  • Article |

    Delivering inherently stable lithium-ion batteries with electrodes that can reversibly insert and extract large quantities of Li+ with inherent stability during cycling are key. Lithium-excess vanadium oxides with a disordered rocksalt structure are now investigated as high-capacity and long-life cathodes.

    • Itsuki Konuma
    • , Damian Goonetilleke
    •  & Naoaki Yabuuchi
  • Article |

    Iridium-based electrocatalysts are traditional anode catalysts for proton exchange membrane water electrolysis but suffer from high cost and low reserves. An alternative, nickel-stabilized ruthenium dioxide catalyst with high activity and durability in acidic oxygen evolution reaction for water electrolysis is reported.

    • Zhen-Yu Wu
    • , Feng-Yang Chen
    •  & Haotian Wang
  • Article |

    Understanding and mitigating filament formation, short-circuit and solid electrolyte fracture is necessary for advanced all-solid-state batteries. The effect of polymorphism on the grain-level chemo-mechanical behaviour of dense and polycrystalline garnet solid electrolytes is now investigated.

    • Marm B. Dixit
    • , Bairav S. Vishugopi
    •  & Kelsey B. Hatzell
  • Article |

    Understanding the ion intercalation and degradation mechanisms occurring during realistic battery operation is crucial to developing high-rate battery electrodes. Operando optical scattering microscopy is now used to study single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anode materials.

    • Alice J. Merryweather
    • , Quentin Jacquet
    •  & Clare P. Grey
  • News & Views |

    A hydroxide exchange membrane fuel cell consisting of a nickel-based anode and a cobalt–manganese–oxide cathode is shown to achieve a power density of 488 mW cm–2 at 95 °C.

    • Frédéric Jaouen
  • Article |

    Wiring photosynthetic biomachineries to electrodes is promising for sustainable bio-electricity and fuel generation, but designing such interfaces is challenging. Aerosol jet printing is now used to generate hierarchical pillar array electrodes using indium tin oxide nanoparticles for high-performance semi-artificial photosynthesis.

    • Xiaolong Chen
    • , Joshua M. Lawrence
    •  & Jenny Z. Zhang
  • Article |

    The oxygen evolution reaction is central to making chemicals and energy carriers using electrons. Metal hydroxide–organic frameworks are shown to act as a tunable catalytic platform for oxygen evolution, with π–π interactions dictating stability and transition metals modulating activity.

    • Shuai Yuan
    • , Jiayu Peng
    •  & Yang Shao-Horn
  • Article |

    Lithium bis(trifluoromethanesulfonyl)imide is used as a conducting salt for rechargeable lithium metal batteries because of its stability, but corrosion with aluminium current collectors is an issue. A non-corrosive sulfonimide salt is shown to suppress anodic dissolution of an Al current collector at high potentials while improving cycling.

    • Lixin Qiao
    • , Uxue Oteo
    •  & Heng Zhang
  • Article |

    Although using proton (H+) conductors is attractive for energy applications, practical conductivity at intermediate temperatures (200–400 °C) remains a challenge. A K2NiF4-type Ba–Li oxyhydride is shown to exhibit a temperature-independent hydrogen conductivity of more than 0.01 S cm–1 above 315 °C.

    • Fumitaka Takeiri
    • , Akihiro Watanabe
    •  & Genki Kobayashi
  • Article |

    In anisotropically shaped photocatalyst particles different constituent facets may form inter-facet junctions at their adjoining edges. Using multimodal functional imaging, inter-facet junction effects on anisotropically shaped bismuth vanadate particles are revealed.

    • Xianwen Mao
    •  & Peng Chen
  • News & Views |

    By using a battery of experimental and theoretical methods, it is shown that ion intercalation into the electrode material birnessite is mediated by structural water.

    • Patrice Simon
    •  & Yury Gogotsi
  • Article |

    Application of electromotive force between molten iron–carbon and slag is shown to decarburize iron. Electrorefining decarburizes by direct interfacial electrochemical reaction, resulting in low solubilized oxygen in iron, even at low carbon concentration.

    • William D. Judge
    • , Jaesuk Paeng
    •  & Gisele Azimi
  • Article |

    Nanostructured birnessite exhibits high specific capacitance and, while an important electrode material for high-power energy storage devices, its capacitive mechanism remains unclear. Capacitive charge storage in birnessite is now shown to be governed by interlayer cation intercalation.

    • Shelby Boyd
    • , Karthik Ganeshan
    •  & Veronica Augustyn
  • Article |

    Interfaces play crucial, but still poorly understood, roles in the performance of secondary solid-state batteries. Using crystallographically oriented and highly faceted thick cathodes, the impact of cathode crystallography and morphology on long-term performance is investigated.

    • Beniamin Zahiri
    • , Arghya Patra
    •  & Paul V. Braun
  • Article |

    Although bulk defects can influence the performance of electrocatalysts used for energy conversion, their structural origins are still unclear. The effects of bulk defects on CO2 electroreduction and H2 evolution activity on Au electrodes are now elucidated.

    • Ruperto G. Mariano
    • , Minkyung Kang
    •  & Matthew W. Kanan
  • Article |

    Although layered oxides electrodes in lithium-ion batteries are designed under conditions avoiding phase transitions, phase separation during delithiation has been observed. This apparent phase separation is shown to be a dynamical artefact occurring in a many-particle system driven by autocatalytic electrochemical reactions.

    • Jungjin Park
    • , Hongbo Zhao
    •  & William C. Chueh
  • Article |

    Metal-fluoride-based lithium-ion battery cathodes are typically classified as conversion materials because reconstructive phase transitions are presumed to occur upon lithiation. Metal fluoride lithiation is now shown to be dominated instead by diffusion-controlled displacement mechanisms.

    • Xiao Hua
    • , Alexander S. Eggeman
    •  & Clare P. Grey
  • Article |

    Structure–activity relationships built on descriptors of surfaces can help to design electrocatalysts, but their identification for electrochemically driven surface transformations is challenging. The composition of LaNiO3 thin film surfaces can now dictate surface transformation and activity of the oxygen evolution reaction.

    • Christoph Baeumer
    • , Jiang Li
    •  & William C. Chueh