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Cytosine methylation is required for mammalian development and is often perturbed in human cancer. To determine how this
epigenetic modification is distributed in the genomes of primary and transformed cells, we used an immunocapturing approach
followed by DNA microarray analysis to generate methylation profiles of all human chromosomes at 80-kb resolution and for
a large set of CpG islands. In primary cells we identified broad genomic regions of differential methylation with higher levels
in gene-rich neighborhoods. Female and male cells had indistinguishable profiles for autosomes but differences on the X
chromosome. The inactive X chromosome (Xi) was hypermethylated at only a subset of gene-rich regions and, unexpectedly,
overall hypomethylated relative to its active counterpart. The chromosomal methylation profile of transformed cells was similar
to that of primary cells. Nevertheless, we detected large genomic segments with hypomethylation in the transformed cell
residing in gene-poor areas. Furthermore, analysis of 6,000 CpG islands showed that only a small set of promoters was
methylated differentially, suggesting that aberrant methylation of CpG island promoters in malignancy might be less frequent
than previously hypothesized.

Reversible methylation of cytosine is a major epigenetic modification
in multicellular organisms1. In mammals, cytosine methylation
occurs almost exclusively at CpG dinucleotides, which are under-
represented in the genome with the exception of CpG islands.
These are small CpG-rich regions that, in many cases, are associated
with promoter regions. Cytosine methylation results in transcriptional
repression either by interfering with transcription factor binding
or by inducing a repressive chromatin structure2. DNA methylation
is required to complete embryonic development3 and has been
directly implicated in genomic imprinting4 and X-chromosome
inactivation2.

Alterations in DNA methylation are associated with many human
diseases and are a hallmark of cancer5. A decrease in the total amount
of cytosine methylation is observed in many human neoplastic tissues,
but the genomic context of this hypomethylation has not been
identified6. At the same time, aberrant promoter hypermethylation
has been observed in sporadic cancer and is thought to contribute to
carcinogenesis by inactivating tumor-suppressor genes5. In light of the
relevance of DNA methylation for normal development and disease,
we know little about its genomic distribution. This partly reflects the
limitations of existing techniques for analyzing DNA methylation at
specific sequences. Here we used an immunocapturing approach to
enrich methylated DNA and combine it with detection by DNA

microarray. Using whole-genome as well as promoter-specific arrays,
we present a methylation profile of unique sequences of the human
genome in primary and transformed cells.

RESULTS
Unbiased detection of methylated DNA by immunoprecipitation
Current strategies to identify chromosomal sites of DNA methyla-
tion rely primarily on the use of methylation-sensitive restriction
enzymes. These require high-molecular-weight DNA and are
limited by the sequence context of the chosen enzyme. For example,
only 3.9% of all CpGs in human nonrepetitive DNA reside at sites
for the frequently used HpaII enzyme7. Conversion of unmethylated
cytosine with bisulfite followed by sequencing provides an unbiased
and sensitive alternative, but it is laborious and cannot be easily
applied to screening a large set of sequences or samples8. To circum-
vent these limitations, we developed methylated DNA immuno-
precipitation (MeDIP), which permits highly efficient enrichment
of methylated DNA. In this assay, an antibody specific for methy-
lated cytosines is used to immunocapture methylated genomic
fragments. The resulting enrichment in the immunoprecipitated
fraction is determined by standard DNA detection (Fig. 1a); thus,
MeDIP can be combined with large-scale analysis using existing
DNA microarrays.
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After optimizing the immunoprecipitation conditions, we carried
out a number of control experiments to test further the specificity and
efficiency of MeDIP. First, we compared the relative enrichment of
known methylated and unmethylated genomic sequences. MeDIP
enriched methylated DNA relative to CpG free and unmethylated
controls by up to 90-fold (Fig. 1b). Next, we analyzed the imprinted
H19 imprinting control region (ICR) sequence, which was previously
shown by bisulfite sequencing to be consistently methylated on one
allele in all somatic cells analyzed9,10. We created defined fragments of
the ICR sequence, which contain different numbers of methylated
cytosines, by restriction digestion of genomic DNA. The level of
enrichment by MeDIP for each sequence increased in a linear manner
with the number of methylated cytosines (Fig. 1c). The monoallelic
methylation of the ICR also allowed us to monitor potential sequence
bias. We used a hybrid mouse strain with a polymorphic restriction
site in this locus that allowed us to distinguish the parental alleles.
Only the methylated paternal allele was detected by MeDIP under our
experimental conditions (Fig. 1d). Thus, of two alleles with similar
sequence, only the methylated one was recognized. These controls
indicate that enrichment of 5-methylcytosine by MeDIP occurs in a
dose-dependent and sequence-independent manner.

Genomic methylation profiles in male and female primary cells
Because MeDIP allows sensitive detection of cytosine methylation, we
combined it with microarray analysis to generate comprehensive maps

of DNA methylation of the human genome. We labeled MeDIP-
enriched and input genomic DNA with different fluorescent dyes and
hybridized them to a microarray. We then calculated the ratio of
methylated to input signal for each sequence spotted on the array and
used this as a read-out for the methylation level (Fig. 2a). A positive
log ratio indicates hypermethylation, and a negative log ratio indicates
hypomethylation. For these experiments, we used a submegabase-
resolution tiling (SMRT) array consisting of 32,433 overlapping BAC
clones, which provide 1.5-fold coverage of the human genome11. The
resulting chromosomal maps represent the methylation landscape of
all nonrepetitive genomic sequence, are mostly gap-free and have an
average tiling resolution of 80 kb.

Because little information exists regarding the conservation of DNA
methylation levels between individuals, we first analyzed genetically
unrelated male and female primary nontransformed human fibro-
blasts. If DNA methylation profiles are conserved, we would expect
similar methylation profiles on autosomes between both samples.
Methylation levels in male and female cells were almost indistinguish-
able in this analysis (R ¼ 0.88; Fig. 2b). We then arranged the BAC
clones along their chromosomal locations to create chromosomal
methylation profiles, which showed that neighboring sequences
tended to have similar methylation levels. We carried out a statistical
analysis to test for similar methylation levels of adjacent probes, which
confirmed a strong autocorrelation over seven to ten BAC clones and
confirmed that methylation tended to be similar over extended
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Figure 1 Methylation analysis by DNA immunoprecipitation (MeDIP). (a) Denatured genomic DNA of desired fragment length (generated by restriction

or sonication) is incubated with an antibody directed against 5-methyl-cytosine (a-5mC), and methylated DNA is isolated by immunoprecipitation (IP).

Enrichment of target sequences in the methylated fraction can be quantified by standard DNA detection methods such as PCR or slot blot (e.g., microarray).

(b) Control sequences that are highly methylated (LAP, Xist, H19), are unmethylated (Actb, Aprt) or lack CpGs (CSa, CSb) were selected from the mouse

genome. Red bars represent the amplified PCR fragments. MeDIP was done on AluI-treated female genomic DNA, and the relative enrichments in the bound
over input fractions was calculated by real-time PCR. The graph shows a specific and efficient enrichment of methylated over unmethylated sequences.

(c) Correlation between enrichment and the number of methylated cytosines on four AluI restriction fragments in the H19 ICR sequence. Enrichment

increases linearly with increasing number of methylated cytosines. (d) Selective immunoprecipitation of the methylated allele at the imprinted H19 ICR

locus. A polymorphic SacI site is used to distinguish the maternal from the paternal allele in a hybrid background (Mus musculus domesticus � SD7).

Filled and open circles represent methylated and unmethylated CpGs, respectively. Plotted are the average enrichments of three experiments. IN, input;

IP, immunoprecipitation.
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genomic regions (data not shown). We then applied local averaging to
create complete chromosomal maps of DNA methylation in male and
female fibroblasts (Fig. 2c and Supplementary Fig. 1 online). These
profiles illustrate the high similarity of DNA methylation between
male and female autosomes.

The inactive X chromosome is globally hypomethylated
Promoter hypermethylation at the inactivated X chromosome (Xi) is
a characteristic of mammalian dosage compensation12. It is unclear
how the global distribution of methylation is affected on Xi. Our data
set allowed us to compare methylation profiles in male and female
fibroblasts over the entire X chromosome, which is represented by
1,461 BAC clones. The methylation level measured in female cells is
the sum of the methylation levels on the active and inactive
X chromosomes; therefore, the differences between the two alleles
are underestimated in our experimental setup.

A male-female comparison of methylation levels for each chromo-
some showed that the X chromosome had a marked difference in
methylation (P ¼ 10�66) compared with the autosomes (Supplemen-
tary Fig. 2 online). The X chromosome in female cells was generally
hypomethylated compared with the male X chromosome (Fig. 2d).
This global hypomethylation does not reflect perturbed X inactivation
in the particular cells studied, as PCR analysis detected local hyper-
methylation of different X-linked promoters in female cells (data not
shown). A more detailed analysis showed that gene-rich regions of the
X chromosome were more methylated in the female cells (Fig. 2d,e),

probably reflecting de novo methylation of promoters undergoing
X inactivation. Yet most of the X chromosome is gene-poor and,
according to our experiments, is hypomethylated at Xi. Previous
reports had already hinted at reduced methylation of Xi in metaphase
spreads, as measured by immunostaining with an antibody against
5-methylcytosine13 or by immunodetection of unmethylated HhaII
restriction sites14. In addition, there is at least one reported example of
a low-copy repeat sequence that is unmethylated exclusively on Xi15.
Our analysis extends these findings by providing evidence for global
Xi hypomethylation.

Genomic determinants of differentially methylated regions
Next, we assessed the sequence characteristics related to differential
methylation in the genome. A visual inspection of the chromosomal
profiles (Fig. 2c and Supplementary Fig. 1 online) indicates that
regions with high methylation levels tend to localize more often in R
bands than in G bands. Even though the exact nature of R-G band
staining is not known, R bands tend to be gene-rich and have a higher
GC content than G bands. Therefore, we collected information on
gene count, Alu and LINE content and GC percentage for each probe
present on the array and determined how these sequence character-
istics related to the measured degree of methylation. On the level of
whole chromosomes, gene-rich chromosomes had higher levels of
cytosine methylation than gene-poor chromosomes (R ¼ 0.93;
Fig. 3a). Therefore, when averaged over large genomic regions,
methylation correlated perfectly with gene density. Because gene-rich
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domains of the genomes also have high CG and Alu contents16, there
was a similar tight correlation with chromosomal Alu (R ¼ 0.97) and
GC content (R ¼ 0.94; Supplementary Fig. 3 online). For LINE
elements, however, which are more abundant in gene-poor regions, we
observed a negative correlation (R ¼ �0.21; Supplementary Fig. 3
online). We conclude that, on the chromosomal level, gene count and
GC and Alu content can be excellent predictors of DNA methylation.

At the level of BAC probes, these general trends were still present,
but the correlation of DNA methylation with gene density
(R ¼ 0.57; Fig. 3a) and with Alu (R ¼ 0.56) and GC content
(R ¼ 0.38) was strongly reduced (Fig. 3b and Supplementary
Fig. 3 online). For any given gene count or GC or Alu content, the
methylation level of BACs can vary widely, as suggested by the reduced
correlation. Therefore, at the local level compared with the larger
chromosomal scale, gene count and sequence composition are rather

poor predictors of DNA methylation. We propose that this difference
reflects the influence of large surrounding domains on the methylation
level at any given chromosomal position.

Chromosomal profiles of DNA methylation in a cancer cell line
Numerous reports have indicated that some tumor cells have an
imbalance in DNA methylation5. The emerging picture shows a global
reduction in the amount of methylated cytosine with coinciding
hypermethylation of a subset of promoters, which may be linked to
inactive tumor-suppressor genes. We mapped the global distribution
of DNA methylation in a colon cancer model (SW48 cells) to
approximate the conservation of chromosomal methylation in a
transformed cell.

The resulting genomic profile indicates that the global distribution
of cytosine methylation is markedly similar to that of primary
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(c) Methylation profile in primary fibroblasts (red) and SW48 cancer cells (green) over a 10-Mb

window on chromosome 3q. The RefSeq gene annotations below the graph illustrate that the region
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higher average methylation level, as indicated

by a high positive correlation (R ¼ 0.93).
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The red line represents a moving average over
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fibroblasts (Supplementary Fig. 4 online), as indicated by a high
pairwise correlation of the methylation levels (log2 ratios) between
both genomes (R ¼ 0.61). In particular, the preferential location of
DNA methylation in gene-rich regions was highly evident in SW48
cells. Similar to the results obtained in primary cells, we found the
highest levels of methylation at gene-rich chromosomes and gene-rich
probes (Fig. 4a,b).

We also detected several regions (up to 20 Mb in size) with marked
hypomethylation in SW48 cells, including 3p26, 3q13.31, 7q35, 14q31
and 11q22.3 (Fig. 4c and Supplementary Fig. 4 online). We carried
out a global comparative genomic hybridization analysis11 to deter-
mine whether local methylation changes reflect duplication or deletion
events. This analysis showed that primary cells were of normal diploid
karyotype, whereas SW48 cells were trisomic with respect to chromo-
somes 7 and 14 and a subregion in chromosome 10q (Supplementary
Fig. 4 online). Because most regions of differential methylation do not
localize to sites of amplification or deletion events, aneuploidy is not
required for the observed differences. But chromosomes 7 and 14 are
among those with high overall hypomethylation in SW48 cells;
therefore, hypomethylation could have contributed to chromosomal
instability. To test further whether hypomethylation in SW48 cells was
linked to gene density, we calculated the actual differences in DNA
methylation between both cell types for any genomic probe and
compared it with its gene content (Fig. 4d). This analysis indicated
that SW48-specific hypomethylation occurred almost exclusively in
gene-poor neighborhoods of the genome. Additional analysis of
multiple tumor samples with matched controls will be required to
elucidate whether these differences in methylation can be linked to
cancer progression.

CpG island methylation in normal and transformed cells
Having identified extended chromosomal regions of differential
methylation, we next asked how they related to the epigenetic state
of individual CpG islands. We combined MeDIP with hybridization to
a microarray representing B12,000 CpG island probes. The sequences
present on this array are derived from a CpG island library in which
75% of all clones represent unique sequences17 and 25% correspond
to repetitive elements as well as ribosomal and mitochondrial DNA.
Half of the unique clones map to the 5¢ end of known genes and thus
represent bona fide promoters. Hybridization resulted in high-quality
measurements for 6,000 sequences, and repeat experiments showed
high reproducibility.

In primary female fibroblasts, most of the CpG islands had only a
basal enrichment in the immunoprecipitated fraction, suggesting
that they remain unmethylated. A subset of sequences, corresponding
mostly to mitochondrial DNA, which is known to lack cytosine

methylation18, had an even lower level of enrichment (Fig. 5).
Among the sequences with high levels of methylation, we identified
a majority with similarity to repetitive DNA (satellites, LINEs
and SINEs), as well as promoters of genes that are imprinted or
reside on the X chromosome. On average, X-linked promoters
had a much higher enrichment than autosomal clones (P o 0.001),
reflecting promoter hypermethylation during X inactivation.
We conclude that our experimental strategy is suitable for
identifying methylated CpG islands and, in agreement with current
models1, that CpG islands remain predominantly unmethylated in
primary cells.

To assess the frequency of aberrant CpG island methylation in
transformed cells, we generated a CpG island methylation profile in
SW48 colon cancer cells and compared it with those of primary
fibroblasts and normal colon mucosa. This analysis showed that
methylation levels of most CpG islands were maintained in the
SW48 cancer cell line (Fig. 5). We did not detect sequences that
were hypomethylated only in SW48 cells, suggesting that, in this
experimental system, epigenetic misregulation does not involve fre-
quent demethylation of CpG islands. But we did identify clones that
showed hypermethylation exclusively in the colon cancer line. By
comparing SW48 cells with primary fibroblasts, we identified 210
clones that were hypermethylated only in SW48 cells, 112 of which
could be identified unambiguously on the basis of sequence annota-
tion. Of these, only 32 correspond to unique sequences and 80
represent ribosomal DNA. Such hypermethylation of ribosomal
DNA has previously been reported in relation to aging and neoplasia,
but its physiological role is not known19,20. Of the unique sequences, 4
clones represent intergenic CpG islands, and the remaining 28 map to
26 different genes. With the exception of two genes, all were located in
the promoter region. Notably, when comparing SW48 cells with
normal colon mucosa, we identified an almost identical population
of unique sequences (Fig. 5b), indicating that this methylation was
linked to the transformed state and did not represent colon-specific
promoter methylation.

To validate the microarray results by single-gene PCR on
methylated DNA, we designed primers specific for 22 of these
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candidate genes. These controls confirmed
SW48-specific methylation in 70% of all
genes (Fig. 6a and Table 1). We used methy-
lation-sensitive restriction digestion as a
separate independent approach and verified differential methylation
on three randomly selected genes (Fig. 6b). In addition, we
carried out bisulfite genomic sequencing of four genes. In each
case, the bisulfite sequencing confirmed the results obtained by
MeDIP and showed extensive methylation in SW48 cells but not in
normal colon mucosa or primary fibroblasts (Fig. 6c and data
not shown).

Finally, using RT-PCR analysis of a subset of these genes, we found
transcriptional downregulation in SW48 cells and derepression by
treatment with the demethylating agent 5-aza-2¢-deoxycytidine (5-aza-
dC; Fig. 6d). This reactivation suggests that the detected methylation
is directly repressing the activity of the linked gene. We conclude that
combining MeDIP with hybridization on a CpG island microarray
allows the identification of epigenetically silenced genes in cancer cells.
The resulting global pattern of CpG island methylation is conserved
between primary and transformed cells, and the number of hyper-
methylated CpG island promoters in transformed cells seems to be
unexpectedly low.

New targets of aberrant methylation in colon cancer
Among the target genes identified on the CpG island array, only the
homeobox gene PAX6 had already been reported to be methylated in
SW48 cells21. Other previously described targets such as MLH1,
RASSF1, TIMP3 or SLIT2 were not present on the array but could
be confirmed by single-gene PCR on MeDIP-enriched DNA (Fig. 6a
and data not shown). The gene GATA3, not studied previously in
colon cancer, was reported to be aberrantly methylated in breast
cancer cells22. The remaining genes are new targets for aberrant
hypermethylation in cancer.

These genes are involved in a wide variety of biological functions
that include regulation of transcription (FOXF1, PAX6, TAZ, GATA3),
cell cycle progression (TGFB2), cell-matrix interactions (ADAM12)
and apoptosis (DAP). Some (RASL11A, FOXF1, TGFB2) have already
been implicated in cancer and have been reported to be down-
regulated in some tumors23–25.

To assess the potential relevance of our findings for cancer biology,
we determined the methylation status for this set of genes in primary
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Figure 6 New targets for aberrant methylation in

colon cancer. (a) Validation of clones identified as

hypermethylated in SW48 cells in microarray

analysis by single-gene PCR. DNA methylation

was controlled by single-gene PCR on MeDIP

samples prepared from female primary

fibroblasts, SW48 colon cancer cells and

matched normal colon (N) and colon tumor (T)

from three individuals. IN, input genomic DNA;

M, MeDIP enriched methylated DNA. MLH1

and RASSF1 were previously described to be

aberrantly methylated in SW48 cells and in some

colon tumors. The imprinted H19 ICR sequence

serves as a positive control for methylation.

(b) Control of methylation status by methylation-
sensitive restriction. Genomic DNA was either

digested with the methylation-sensitive HpaII

enzyme or undigested and used as a PCR

template with primers spanning a HpaII-

containing PCR fragment in three randomly

selected positive clones (top) and negative clones

(bottom). The number of HpaII sites in the PCR

amplicon is indicated in parenthesis. Presence of

a PCR product after HpaII digest reflects DNA

methylation in the sample and, in each case,

confirms the MeDIP analysis. (c) Methylation

analysis in the promoter of candidate genes by

bisulfite genomic sequencing. For each gene, the

transcription start site (arrow) and first exon

(open box) are shown, and regions analyzed by

bisulfite sequencing are indicated below the

gene. Each line represents the sequence of

a single clone. CpGs are shown as white
(unmethylated) or black (methylated) circles.

(d) Reactivation of silenced genes in SW48

cells by treatment with 5-aza-dC. RT-PCR

was done on cDNA prepared from female

fibroblasts and SW48 cells and treated with

5 mM 5-aza-dC for 4 d (+) or untreated (�).

In this analysis, TGFB2 transcripts are also

detected in SW48 cells. ACTB served as an

unmethylated control.
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adenocarcinoma and matched normal colon tissue from three indivi-
duals (Fig. 6a). Many genes were methylated in one or two of the tested
adenocarcinoma but not in the matched normal control. The variable
methylation of these genes in the tested adenocarcinoma and normal
colon samples highlights the epigenetic complexity in colon cancer. We
also detect different levels of existing methylation in normal colon for
some genes (ALX4, ZNF677, LOC283514). Such differential accumula-
tion of methylation with age has been observed for other genes and
might predispose to cancer formation26,27. In summary, more than half
of the tested genes identified as methylated in SW48 cells were also
methylated in at least one of three tested tumors, indicating that we
identified new targets for aberrant hypermethylation in vivo.

DISCUSSION
This study shows that immunocapturing with an antibody against
5-methyl-cytidine after random fragmentation allows highly specific
isolation of methylated DNA. This technique circumvents the
sequence bias of approaches that rely on restriction digestion7. We
show that MeDIP can be combined with genomic analysis using
existing microarray platforms and does not require particular array
probes as, for example, with the analysis of bisulfite-converted DNA28.
Thus, epigenomic profiling of DNA methylation can be done in
existing laboratory settings. Of note, the fragmented DNA used in
this study has a size range similar to DNA after isolation from
formalin-fixed tissues. Accordingly, it should be possible to use
MeDIP to screen stored clinical samples and enable large-scale analysis
of material from individuals with defined clinical history.

Our analysis results in a high-resolution analysis of DNA methyla-
tion of unique sequences along the human genome and shows that
gene-rich domains contain high levels of DNA methylation. These
blocks are contiguous over large regions and extend over several genes.
A preferential methylation of gene-rich R bands had previously been
suggested on the basis of immunostaining of metaphase chromo-
somes13,29. Chromosomal stainings have an approximate resolution of

10 Mb and do not distinguish between unique and repetitive DNA.
Our analysis provides a resolution more than 100 times higher under
hybridization conditions that largely block repetitive DNA. Therefore,
we conclude that the measured methylation must reside mostly in
unique or low-copy sequences. Furthermore, it does not reflect
methylation of promoter CpG islands as we find these largely
unmethylated (Fig. 5). On the basis of these findings, we propose
that genic regions in general are highly methylated, which is in line
with previous single-gene analysis30.

DNA methylation leads to a repressive chromatin structure through
recruitment of histone deacetylase activity31. Does intragenic methyla-
tion hinder polymerase elongation, as has been shown in the fungus
Neurospora crassa32? A recent study using murine cell lines indicates
reduced polymerase elongation when only intragenic DNA methyla-
tion was increased at a defined genomic locus33. Such intragenic
methylation with its potential negative effect on polymerase elonga-
tion could inhibit inappropriate transcriptional initiation at cryptic
sites34 and might spread from methylated repeats35.

Genomic studies using microarrays with BAC-sized probes have
recently shown that gene-rich regions of the human genome replicate
early during S phase36,37, reside in open chromatin fibers38 and
localize outside their chromosomal territory in the interphase
nucleus38. Hence, the same regions that share these euchromatic
features contain high levels of DNA methylation. This apparent
paradox argues that the local repressive chromatin structure mediated
by DNA methylation does not interfere with early replication timing,
euchromatic fiber organization or nuclear localization. In this context,
cytosine methylation seems to be an epigenetic mark that restricts
access to DNA only locally and does not necessarily lead to hetero-
chromatic structures.

Notably, Xi as a form of facultative heterochromatin shows overall
reduced methylation with the exception of gene-rich regions. This
observation challenges the view that chromosome-wide hypermethy-
lation is a characteristic of X inactivation, and it will be interesting

Table 1 Genes identified as hypermethylated in SW48 cancer cells

Residual (log2 ratio)

Gene name Accession number Location SW48-WI38 SW48-colon CpG island

KIAA0789* NM_014653 12q24.11 1.886 1.053 Promoter

Forkhead box F1 (FOXF1)* NM_001451 16q24 1.584 0.934 Exon 2

Sonic hedgehog homolog (SHH)* NM_000193 7q36 1.310 1.208 Exon 2

Disintegrin and metalloproteinase domain 12 (ADAM12)* NM_003474 10q26.3 1.535 0.957 Promoter

RAS-like, family 11, member A (RASL11A) NM_206827 13q22.2 1.629 0.849 Promoter

Paired box gene 6 (PAX6)* NM_000280 11p13 1.245 1.014 Promoter

Predicted gene BC038214 1q31.3 1.006 1.140 Promoter

Zinc finger protein 677 (ZNF677)* NM_182609 19q13.42 1.426 0.753 Promoter

GATA binding protein 3 (GATA3)* NM_001002295 10p15 1.109 0.928 Promoter

FLJ25439* NM_144725 5p13.2 1.217 0.756 Promoter

Cell division cycle associated 2 (CDCA2) NM_152562 8p21.2 0.870 1.099 Promoter

Transforming growth factor, beta 2 (TGFB2)* NM_003238 1q41 1.101 0.811 Promoter

Zinc finger protein 566 (ZNF566)* NM_032838 19q13.13 1.066 0.831 Promoter

Ribosomal protein S27-like (RPS27L) NM_015920 15q22.2 0.988 0.891 Promoter

LOC283514* NM_198849 13q14.13 0.823 0.907 Promoter

Aristaless-like homeobox 4 (ALX4)* NM_021926 11p11.2 1.040 0.733 Promoter

Transcriptional co-activator with PDZ-binding motif (TAZ)* NM_015472 3q23–q24 1.117 0.417 Promoter

Death-associated protein (DAP)* NM_004394 5p15.2 0.801 0.566 Promoter

The residual value describes the difference in methylation enrichment as measured on the CpG island array. It is calculated by subtracting the log2 ratio in SW48 cells from that in
fibroblasts or normal colon mucosa. The last column indicates the position of the CpG island clone in the gene. Targets highlighted with an asterisk (*) were confirmed by single-gene
PCR analysis (Fig. 6a).
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to determine how the observed hypomethylation relates to the
nonuniform chromatin structure of Xi39,40 and if it is mechanistically
involved in dosage compensation. Regardless, the differential abun-
dance of DNA methylation in gene-rich regions of the genome and at
X-linked facultative heterochromatin point to a context-dependent
function of DNA methylation in euchromatic and heterochromatic
regions of the genome.

Our chromosomal and promoter-specific methylation profiles
allowed us to approximate the extent and localization of differential
methylation between a primary and a transformed cell. The chromo-
somal patterns in both cell types are markedly similar, suggesting that
global patterns of DNA methylation are largely conserved between a
colon cancer cell line and primary cells (Supplementary Fig. 4
online). But we detected defined chromosomal regions of differential
methylation, extend over 20-Mb domains (Fig. 4 and Supplementary
Fig. 4 online). Detailed analysis of these regions showed that specific
hypomethylation occurs preferentially in gene-poor regions of the
genome of SW48 cells. Further genomic and epigenomic analysis,
similar to that reported here, of multiple tumor samples will be
required to elucidate whether these extended regions are frequent
targets and whether they coincide with sites of genomic instability, as
has been suggested on the basis of analysis of knockouts of genes
encoding DNA methyltransferases41–43.

We did not detect preferential localization of aberrantly methylated
CpG island promoters in chromosomal regions with differential
methylation. This could suggest that these processes are not coordi-
nated, but a more comprehensive analysis including non-CpG island
promoters might be required to answer this question conclusively.

We found only a small set of genes to be hypermethylated in SW48
cells compared with primary fibroblasts and normal colon mucosa. A
simple extrapolation of our CpG island screen to the remainder of the
genome would predict that B200 unique genes are hypermethylated
specifically in SW48 cells, considerably fewer than previously esti-
mated for colon cancer44. A small number of epigenetically silenced
genes might imply that aberrant hypermethylation is either a random
event with low frequency or very selective. Selectivity could either be
mediated by combined targeting of coregulated genes (upstream) or
be a consequence of clonal selection during neoplasia (downstream).
Either case would predict that these genes are transcriptionally
repressed as a consequence of hypermethylation and that they are
frequently methylated in primary cancer samples. Inhibition of DNA
methylation results in transcriptional activation of most of the genes
identified in this screen, which we also identified as targets of aberrant
promoter methylation in primary adenocarcinoma.

Recent genome-wide studies have shed light on transcriptional
regulation45,46 and the interplay of transcription with genome stabi-
lity11,47, chromatin structure and organization38,48 and DNA replica-
tion36,49. Our comprehensive analysis provides a first epigenomic
map of DNA methylation in the human genome. Additional studies
using a similar strategy should yield further insights into the dynamics
and hierarchy of epigenetic regulation during normal development
and disease.

METHODS
Cell culture and tissue samples. We obtained human primary lung fibroblasts

(male, HFL-1; female, WI38) and the colon cancer cell line SW48 from ATCC

and cultured them in Dulbecco’s modified Eagle medium containing 10% fetal

calf serum at 37 1C and 5% CO2 as described37. The fibroblasts represent

primary cells as they are nontransformed, are nonclonal and undergo senes-

cence after a limited number of passages, similar to mouse embryonic

fibroblasts. We took samples from low–passage number fibroblasts before

senescence. Global comparative genomic hybridization analysis showed that

these fibroblasts have a perfect karyotype (data not shown). We took adeno-

carcinoma samples and matched controls from three individuals and imme-

diately froze them. The purity of the tumor samples was 80%, based on

standard histology.

5-aza-dC treatment and RT-PCR. We seeded SW48 cells (1 � 106) in culture

medium and maintained them for 24 h before treating them with 5 mM

5-aza-dC (Sigma) for 4 d. We renewed medium containing 5-aza-dC every 24 h

during the treatment. We handled control cells the same way, without adding

5-aza-dC. We prepared total RNA using the RNeasy Mini Kit (Qiagen) and

synthesized cDNA from 2 mg of total RNA using the Superscript first-strand

synthesis system (Invitrogen) and oligo-dT primers. We carried out PCR

reactions on 1/20 of the cDNA preparation. Controls without reverse tran-

scriptase enzyme were negative. Primer sequences are given in Supplementary

Table 1 online.

MeDIP assay. We prepared genomic DNA from cultured cells and tissue

samples by overnight Proteinase K treatment, phenol-chloroform extraction,

ethanol precipitation and RNase digestion. Before carrying out MeDIP, we

sonicated genomic DNA to produce random fragments ranging in size from 300

to 1,000 bp. If indicated, genomic DNA was digested with AluI to create defined

fragments. We used 4 mg of fragmented DNA for a standard MeDIP assay. We

denatured the DNA for 10 min at 95 1C and immunoprecipitated it for 2 h at

4 1C with 10 ml of monoclonal antibody against 5-methylcytidine (Eurogentec29)

in a final volume of 500 ml IP buffer (10 mM sodium phosphate (pH 7.0),

140 mM NaCl, 0.05% Triton X-100). We incubated the mixture with 30 ml of

Dynabeads with M-280 sheep antibody to mouse IgG (Dynal Biotech) for 2 h at

4 1C and washed it three times with 700 ml of IP buffer. We then treated the

beads with proteinase K for 3 h at 50 1C and recovered the methylated DNA by

phenol-chloroform extraction followed by ethanol precipitation.

PCR and real-time PCR on MeDIP samples. We carried out PCR and real-

time PCR reactions with 25 ng of input DNA and 1/30 of the immunoprecip-

itated methylated DNA. For real-time PCR reactions, we used the SYBR Green

PCR master mix (Applied Biosystems) and an ABI Prism 7000 Sequence

Detection System. Reactions were done in duplicates and standard curves were

calculated on serial dilutions (100–0.1 ng) of input genomic DNA. To evaluate

the relative enrichment of target sequences after MeDIP, we calculated the ratios

of the signals in the immunoprecipitated DNA versus input DNA. The resulting

values were standardized against the unmethylated control sequence CSa,

which was given the value 1. In case of the regular PCR, the reaction was

initially set up on serial DNA dilutions with varying number of cycles to ensure

that the PCR amplification is in the linear range. Primer sequences are given in

Supplementary Table 1 online.

SMRTarray hybridization and analysis. For the genome-wide profiles of DNA

methylation, we used the previously described SMRT array consisting of 32,433

overlapping BAC clones with an approximate resolution of 80 kb (i.e., two-

thirds of an average BAC clone)11. We spotted the entire set of clones in

triplicate onto two aldehyde-coated slides. We labeled 400 ng of sonicated input

DNA and of methylated DNA enriched by the MeDIP assay separately with

cyanine-3 and cyanine-5 dCTPs. We carried out probe labeling, repeat blocking

with Cot-1 DNA, subsequent hybridization and washing as described11. We

imaged hybridized slides using a CCD-based imaging system (Arrayworx

eAuto, Applied Precision) and analyzed them with SoftWoRx Tracker Spot

Analysis software. We averaged the ratios of the triplicate spots and calculated

standard deviations. All spots with s.d. 4 0.075 or signal-to-noise ratios o 20

were removed from the analysis. Repeat experiments showed that results were

highly reproducible (fibroblasts R ¼ 0.88; SW48 R ¼ 0.83). We carried out

subsequent data analysis (averaging, ranking, autocorrelation and correlation

analysis) in Excel (Microsoft) and S-Plus (Incyte). All microarray data are

available for download at our project website.

Calculation of genomic parameters for individual BAC probes. We obtained

mapped positions for genes, LINE and Alu elements, and GC percentage (per

20 kb) from the respective tracks on the University of California Santa Cruz

Genome Browser version 95 (April 2003 assembly). We used the values and

positional information for each category to calculate the gene count, LINE and
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Alu densities, and average GC percentage for each of the 32,433 BACs present

on the SMRT array. Correlations between gene count and methylation level

used averages from 15 probes to account for variable transcript lengths.

CpG island microarray hybridization and analysis. For CpG island array

hybridization, we labeled 2 mg of sonicated input DNA with Cy5-dCTP and the

product of one MeDIP assay with Cy3-dCTP by random priming using the

Bioprime labeling kit (Invitrogen), 120 mM of each dATP, dGTP, dTTP, 60 mM

dCTP and 60 mM Cy5-dCTP or Cy3-dCTP. We hybridized the labeled material

to the human CpG array 12k from the University Health Network Microarray

Centre. This array consists of 12,192 clones derived from a published CpG

island library17. We carried out hybridization in accordance with the instruc-

tions from the University Health Network Microarray Centre. We purified Cy5-

and Cy3-labeled probes with the QIAquick PCR purification kit (Qiagen) and

mixed them with yeast tRNA (30 mg), salmon sperm DNA (50 mg) and human

Cot-1 DNA (25 mg) in DIG Easy Hyb solution (Roche). After denaturation

(2 min at 65 1C) and a Cot-1 preannealing step (30 min at 37 1C), we

hybridized the slide at 37 1C for 24 h. We washed the array three times in

1� saline sodium citrate and 0.1% SDS at 50 1C and two times in 0.1� saline

sodium citrate at room temperature. We scanned the arrays with an Axon

4100B scanner (Axon) and analyzed them using the GenePix Pro 5.0 (Axon)

software package and Excel (Microsoft). Features with poor signal-to-noise

ratios or saturated pixels were excluded from further analysis. We calculated the

ratio between Cy3 and Cy5 signals for all high-quality features and ratio-

normalized and log2-transformed the Cy3 and Cy5 channels using GenePix

standard settings. Values are averages of two independent repeats (R ¼ 0.76

between WI38 repeats, R ¼ 0.79 between SW48 repeats, R ¼ 0.79 between

colon mucosa repeats). The resulting data sets are accessible from our project

website and from the National Center for Biotechnology Information GEO

database. We used the following criteria to select hypermethylated clones in

SW48 cancer cells relative to fibroblasts or normal colon mucosa: log2 ratio in

SW48 cells 4 0.6 and residual log2 ratio 4 0.75. We identified selected clones

using the BLAT algorithm on the human genome. Clones with low-quality

sequence reads or multiple BLAT hits, as well as those which did not map to

CpG islands, were excluded from further analysis.

Bisulfite genomic sequencing. We prepared 200 ng of genomic DNA from

SW48 cells, normal colon mucosa and WI38 fibroblasts and embedded it in

25 ml of melted 2% LMP agarose to form beads. We carried out denaturation,

treatment with sodium bisulfite, PCR amplification and cloning as previously

described50. Primer sequences are given in Supplementary Table 1 online.

HpaII digest. We digested 2 mg of genomic DNA either with XbaI and HpaII or

with XbaI alone. We carried out PCR reactions on 25 ng of digested DNA using

primers spanning fragments that contain several HpaII restriction sites. Primer

sequences are given in Supplementary Table 1 online.

URLs. Our project website is http://www.fmi.ch/members/dirk.schubeler/

supplemental.htm. The University Health Network Microarray Centre is

available at http://www.microarray.ca/.

GEO accession numbers. CpG island array, GSE2653; SMRT array, GSE2664.

Note: Supplementary information is available on the Nature Genetics website.

ACKNOWLEDGMENTS
We thank members of the laboratory of D.S. and W.L.L., C. Alvarez, C. MacAuly
and U. Platzbecker for advice; C. Wirbelauer for technical assistance; P. Svoboda
for advice on bisulfite genomic sequencing; A. Peters, M. Groudine, M. Lorincz
and C. Brown for comments on the manuscript; T. Forné for sharing genomic
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