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Proper regulation of protein levels is essential for health, and abnormal levels of proteins are hallmarks of many diseases. A number
of studies have recently shown that messenger RNA levels vary among individuals of a species and that genetic linkage analysis
can be used to identify quantitative trait loci that influence these levels. By contrast, little is known about the genetic basis of
variation in protein levels in genetically diverse populations, in large part because techniques for large-scale measurements of
protein abundance lag far behind those for measuring transcript abundance. Here we describe a label-free, mass spectrometry–
based approach to measuring protein levels in total unfractionated cellular proteins, and we apply this approach to elucidate
the genetic basis of variation in protein abundance in a cross between two diverse strains of yeast. Loci that influenced protein
abundance differed from those that influenced transcript levels, emphasizing the importance of direct analysis of the proteome.

A number of recent studies have shown that transcript levels vary
among individuals of a species, and that genetic linkage analysis can be
used to identify quantitative trait loci that influence the transcript
levels of individual genes and groups of genes1. In some cases, genetic
differences in transcript levels have been shown to be linked to
phenotype or associated with disease2–5, but in general the functional
significance of genetic variation in transcript abundance remains
unknown. Much of the work of the cell is performed by proteins,
and therefore functionally important changes in transcript levels are
expected to be reflected in changes in the levels of corresponding
proteins. However, various mechanisms of post-transcriptional regu-
lation can either buffer changes in transcript abundance so that they
do not lead to changes in protein abundance or lead to changes in
protein abundance in the absence of a corresponding effect on
transcripts, as reflected in the weak correlation between transcript
and protein levels6 (however, see also ref. 7). Thus, as a more
immediate readout of cellular physiology, direct examination of the
proteome is expected to provide biological insights and disease
biomarkers that cannot be captured through evaluation of the
transcriptome alone. Previous studies of the genetic control of protein
levels have been largely qualitative owing to limitations of existing
techniques, specifically two-dimensional gels8,9. Furthermore, these
studies did not include measurements of transcripts to allow the
genetics of protein and transcript level variation to be compared in
the same population.

Proteome profiling based on mass spectrometry holds great pro-
mise for the quantitative measurement of protein abundance10,11. In a
proteomic experiment, output from a mass spectrometer can be
represented as a matrix of peaks (Fig. 1a), each of which represents

a peptide that is defined by a specific elution time, relative ion
intensity value and mass-to-charge ratio. These matrices allow direct
quantitative proteomic comparisons because the relative ion intensi-
ties of a given peptide in two samples reflect the relative abundance of
their corresponding proteins. In theory, one should be able to
compare the levels of peptides in complex mixtures simply by
analyzing each sample by liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) and comparing the ion intensities of the
peptides of interest from hundreds of different matrices, just as
transcript levels are compared across samples by measurements of
corresponding spot hybridization intensities on microarrays. Because
elution times can differ from experiment to experiment in a nonlinear
fashion, however, alignment of the corresponding peptides presents an
important challenge to this approach. Alignment of the matrices
allows one not only to quantify large numbers of peptides across
many datasets but also to increase peptide sequence identifications.
Sequencing of peptides is inefficient, and therefore many peptides are
sequenced in only a small percentage of the total datasets. However,
alignment allows a single sequence identity to be translated across
hundreds of datasets. Methods for aligning peptides that are based on
labeling two peptide mixtures with different stable isotope tags and
then analyzing the combined mixtures in a single LC-MS/MS experi-
ment have been developed12–14, but these methods, although well
suited for pairwise comparisons, have proved inadequate for proteome
profiling studies involving large numbers of samples because they do
not solve the problem of aligning peptide identities across many
matrices. On the other hand, methods for relative quantification that
are based on mathematical alignment15–18, although appealing in
principle, have been difficult to put into practice for large-scale studies
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because computational requirements rise quadratically with increasing
numbers of samples.

Building on our previous algorithm19, which calculates a contin-
uous function to determine how much time must be added to or
subtracted from the elution times for peaks in two complex mixtures
to make them superimposable (Fig. 1b,c), we have now developed a
robust and accurate computational method for aligning MS matrices
and correlating peptides in hundreds of LC-MS datasets. We used
graph theory to overcome a mathematical challenge that arises when
the number of samples to be aligned exceeds approximately 20 (see
Supplementary Methods and Supplementary Fig. 1 online). Notably,
this algorithm has modest computational requirements: using only a
typical laptop computer, we were able to align 408 LC-MS/MS datasets
of total unfractionated yeast proteins. This allowed us to map more
than 100 loci that regulate protein levels and thereby to gain insight
into the genetic basis of proteome diversity in yeast on a global scale.
Furthermore, because the genetic basis of transcript abundance had
been previously analyzed in the same population, our study enabled us
to compare directly the genetic circuitry that underlies proteome and
transcriptome diversity in an outbred population. It is important to
note that, even if we had quantified these peptides using stable
isotopes rather than our label-free quantification, a large-scale map-
ping study such as this would not have been possible without the
alignment algorithm, as discussed above.

RESULTS
To analyze the proteomes in a genetically diverse population, we used
a cross between a laboratory strain of yeast, BY4716 (ref. 20), and a
vineyard isolate, RM11-1a (ref. 21). These strains have both been
sequenced, and they differ at B0.6% of base pairs22. Furthermore,
these strains and more than 100 segregants from a cross between them
have been densely genotyped and extensively studied with regard to
the genetic basis of variation in transcript levels5,23,24. We chose a
direct ‘lyse and go’ approach for the proteome analysis that circum-
vented proteome pre-fractionation. The simplicity of this approach
allowed us to analyze more than 400 samples of total cellular proteins
by shotgun proteomics. We isolated total proteins from eight inde-
pendent logarithmic-phase cultures of each parent and from two
independent cultures of each of 98 segregants, digested them with
trypsin, and analyzed the resulting mixture directly by LC-MS/MS on
a linear ion trap (LTQ)–Fourier transform ion cyclotron resonance

(FT-ICR) mass spectrometer. Each parental protein preparation was
analyzed once (eight replicates per parent) and each segregant
preparation was analyzed twice (four replicates per segregant). We
identified 6,898 peptides, derived from 1,693 proteins, among which
we quantified 1,873 peptides corresponding to 569 proteins. These 569
proteins ranged from very low to very high abundance, as determined
by tagging with green fluorescent protein (GFP) and/or by tandem
affinity purification (TAP)25, although there was a clear bias toward
high-abundance proteins. Peptide ionization efficiencies vary widely
between peptides, and our ability to quantify even low-abundance
proteins might be partly attributable to each of those proteins having
at least one peptide that ionizes particularly efficiently. Of the proteins
we quantified, 225 were involved in protein biosynthesis, 81 in energy
metabolism, 41 in cellular structure, 32 in response to stress, 35 in
transport, 18 in RNA metabolism and 13 in DNA metabolism; 124
either had other functions or had unknown functions26.

Genetic differences in protein abundance
We next looked for differences in protein abundance between the two
parents. Of 1,010 quantified peptides from 376 proteins that were well
measured in both parents, 196 peptides from 137 proteins had
significant differences in intensity (P o 0.005). If these proteins
constitute a representative sample of the proteome, more than one-
third of the proteome differs between the two parents. To confirm that
the differences in peptide intensity between the parental strains reflect
the differences in the abundance of the corresponding proteins, we
compared the mass spectrometric measurements of the peptides with
the protein levels measured by western blots (Fig. 2). We introduced a
triple hemagglutinin (HA) tag at the C termini of nine proteins whose
peptides were found to be different between the strains by integrating
a tag into the corresponding sites in the genome of each strain27.
These proteins were chosen randomly from the set of 137 proteins that
were determined to be different between the two parents with a
probability P o 0.005. Measurement of protein levels using western
blots unequivocally confirmed the differences in protein abundance
for eight of nine measured proteins and correlated well with the mass
spectrometric measurements. For one protein, 6-phosphogluconate
dehydrogenase (Gnd1), the difference between laboratory and
vineyard strain measured by western blotting was significantly less
than expected from mass spectrometric measurements. The introduc-
tion of the tag, which changes the amino acid composition of the
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c Figure 1 Schematic of method for alignment of

MS matrices. (a) Mass spectrometric analysis of a

complex mixture can be represented as a collec-

tion of peaks, each of which corresponds to a

peptide that is defined by a specific elution time

and mass-to-charge (m/z) ratio. (b) Graph shows

the amount of time (D1,2 time), as a function of

the elution times (time1) and mass to charges

(m/z1) of the peptides in sample 1, that must be

added to the elution time of peptides in sample 2

to make the two sets of peptides superimposable.

(c) Two-dimensional representations of the LC-MS

data obtained by taking a ‘slice’ at a single level

of relative ion intensity. The blue and yellow

spots represent peptides from different LC-MS
analyses that are approximately, but not

exactly, superimposable. To align LC-MS data,

a given amount of time, which depends on both

elution time and m/z, must be added to each

yellow spot.
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protein and alters the 3¢ untranslated region, could account for
this single discrepancy, as might noise in the mass spectrometric
measurements or a combination of the two. These results show
that our technology can identify and accurately quantify differences
in protein abundance (also see Supplementary Fig. 2 online and
Supplementary Methods).

Protein levels varied continuously among the segregants, showing
that protein levels, like transcript levels, behave as quantitative traits.
To study the genetic basis of variation in protein levels, we focused on
those proteins that were quantified in at least 40 segregants and that,

within each segregant, were quantified in at least three of the four
replicate analyses. We also selected only the best peptide for a given
protein, yielding 221 unique peptides with high-quality data. These
221 peptides correspond to 278 proteins. (There are more proteins
than peptides because 57 peptides arise from ribosomal genes that are
present in two copies.) We estimated the genetic contribution to the
observed variability in protein abundance for a subset of 156 of these
proteins for which high-quality data from the parent strains was also
available. This contribution, as measured by heritability, averaged
62%, implying that variation in abundance among the segregants is
primarily due to genetic differences rather than to stochastic variability
among biological replicates or to measurement noise.

Linkage analysis of protein abundance
We next looked for linkage between protein levels in the segregants
and 2,951 genetic markers for which these strains have been geno-
typed23. Linkages were identified with the widely used R-QTL software
package28. At a false-discovery rate (FDR) of 0.042, corresponding
to a lod score Z5.1, we detected 24 linkages, with a single expected
false positive. For further analyses, we chose to look at a larger
number of more liberal linkages, in order to be able to look for hot
spots and carry out other analyses. The abundance of 85 proteins
mapped to at least one locus with a LOD score of 3 (at this threshold,
19 linkages are expected by chance on the basis of permutation
tests). We identified 109 loci when we counted multiple loci
per protein. An example of a mapping result is shown in Figure 3a.
These mapping results provide further validation of protein quanti-
fication because highly ‘noisy’ data would not permit detection
of linkage29.

Among the 221 peptides used for mapping, 37 differed between the
parents at Po 0.005. Twenty-three of these 37 peptides (62%) showed
linkage to at least one locus. Because this cross has high power to map
parental differences that are due to single loci, the lack of linkage for
38% of peptides with differences in abundance between the parents
indicates considerable complexity in the underlying genetics, as
observed for transcript abundance23,24. An additional 39 peptides
were not called different between the parents at P o 0.005 but
showed linkage in the cross. This result is probably a combination
of false-positive linkages (19 are expected), false negatives in the test
for differences between the parent strains, and transgressive segrega-
tion. Transgressive segregation is a common phenomenon in which
each parent has alleles that exert opposing effects on a trait; these
opposing effects can leave the parents appearing to be identical for the
trait, but large differences can arise in the progeny when new
combinations of the opposing alleles unmask their effects. Most
heritable transcript levels showed transgressive segregation in this
cross23. An example of transgressive segregation is shown in Figure 3b.

To explore the genetic regulation of protein levels further, we
determined whether the loci that affect protein abundance mapped
near the genes that encodes the corresponding proteins (local linkage)
or elsewhere in the genome (distant linkage). Local linkage is
consistent with a genetic change in a regulatory region of the
structural gene or in the coding sequence that affects the stability or
regulation of the protein. To test for local linkage, we measured the
distances between the genetic marker with the highest linkage score
and the gene that encodes the affected protein. Only 7% (6/85) of the
peptides with linkage linked to a marker within 20 kb of the encoding
gene, and the majority of the linkages were to a locus on a different
chromosome (Supplementary Table 1 online). Polymorphisms that
result in amino acid differences are expected to manifest themselves as
locally linked proteins because they will be absent in those segregants
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Figure 2 Protein quantifications by western blotting and by MS

measurements are comparable. Cys4, Por1, Atp2, Hxk2, Fba1, Cdc19,

Sse1, Gnd1 and Ssa1 were tagged with three HA epitopes27 and analyzed

by western blotting with anti-HA and anti-actin antibodies. Loading was

normalized according to Ponceau staining (data not shown) and actin. The

bottom panels show the median (black line) surrounded by one s.d.

(rectangle) and the range (dashed line) for ion current quantification of eight

mass spectrometric measurements of the untagged versions of the proteins.
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that inherit the polymorphism (that is, this apparent local linkage is
just an artifact of the technique and not a biologically meaningful
result). Furthermore, because the amino acid composition of the two
forms of the protein will be different, it is not possible to use ion
intensities for relative quantification of the two forms. As expected, we
saw polymorphic peptides that showed local linkage. However,
because apparent local linkage due to such polymorphisms does not
reflect genetic control of differences in the abundance of the corre-
sponding protein, such results were not taken into account in
calculating the numbers cited above.

Trans hot spots of linkage
Loci that affect protein levels were not evenly distributed throughout
the genome; instead, we found four hot spots that were significantly
enriched for the number of linkages (Fig. 4). The ‘hot spot’ bins with
five or more compound linkages are ‘hot’ at P o 0.001 for observing
any such bins, as computed on the basis of a Poisson distribution with
a Bonferroni correction for 611 bins. These hot spots on chromo-
somes 2, 3, 4 and 13 affected the abundance of 8, 35, 6 and 25
proteins, respectively. The locus that affected the largest number of
proteins mapped to LEU2, a gene involved in leucine biosynthesis that
had been deleted in one of the two parents, and 9 of the 35 proteins
whose abundance linked to this locus were involved in amino acid
biosynthesis. The amino acid biosynthesis regulon can be activated by
the lack of a single amino acid30. All strains in this experiment were
grown in synthetic medium that, although supplemented with amino
acids, is limiting for amino acids. Lower levels of leucine in strains in
which LEU2 is deleted are expected to activate the amino acid
biosynthesis regulon. A growth advantage phenotype has been
mapped to LEU2 when these strains were grown on standard synthetic
medium, whereas doubling the amount of leucine in the medium
abolished this growth advantage phenotype (E. Smith, unpublished
data). In addition to the enrichment for amino acid biosynthesis genes
among those regulated by the LEU2 hot spot, we saw enrichment
(11/25) of such genes linked to the hot spot on chromosome 13. We
saw no other evidence of enrichment of specific functions for the
genes regulated by a single hot spot.

Comparison of variation in proteome and transcriptome
We found both similarities and intriguing differences between genetic
regulation of proteins and transcripts. The average correlation between
transcript levels and protein levels was 0.186, which is comparable to
published results6 (Supplementary Fig. 3 online). The extent of
differences in abundance between the parental strains was comparable
for the transcriptome and the proteome (around one-third in both

cases), but only 59 of 137 proteins (43%) that differed in abundance
between the parents corresponded to transcripts that were different
between the parents21. This overlap is significantly greater than what
would be expected by chance (P o 0.001), showing that differentially
expressed proteins are more likely to correspond to differentially
expressed transcripts. The remaining 78 cases are probably a combina-
tion of false negatives in the transcript data and real instances where
proteins differ and transcripts do not. As observed with transcripts,
differences in protein abundance were heritable and showed evidence
of complex segregation.

Linkage analysis that was restricted to the set of genes and
segregants for which we had measurements of both transcripts and
proteins detected loci for 156 of 278 transcripts (56%) compared to 85
of 221 peptides (38%). Most loci influenced either peptide abundance
or transcript abundance but not both, and most of the peptide
linkages remained significant even when the relative abundances of
the corresponding transcripts were included as covariates in the
linkage analysis (Supplementary Note online). The set of all tran-
scripts showed a higher frequency of local linkage than was observed
for peptides, but the subset of transcripts with measured peptide
abundance did not (9 of 156 transcripts versus 6 of 85 peptides). This
subset is located in regions of the genome with lower polymorphism
rates (Supplementary Note), which reduces the frequency of local
linkages31. Whether local regulatory variation is less important for
protein abundance than for transcript abundance overall remains to
be determined.

A common feature in the genetics of both transcripts and proteins is
the existence of linkage hot spots: a small number of loci, each of
which affects the abundance of a disproportionately large number of
transcripts or proteins. Although the locations of three of the four
protein hot spots also represent hot spots for transcriptional regula-
tion (Fig. 4), there are several notable differences between the two sets
of hot spots. First, one hot spot (on chromosome 4) is seen only at the
protein level, implying that some polymorphisms exert their effects
without altering transcript abundance and can only be discovered
through direct measurement of proteins. (Although the mapping
confidence interval is too large to attribute this hot spot to a particular
gene, we note that there are two genes in the region, RPL27B and
MRPL28, that are involved in translation.) Similarly, many hot spots
observed at the transcript level show no effect on the levels of proteins,
presumably reflecting buffering of protein abundance by post-
transcriptional regulatory mechanisms. For example, there are ten
transcripts whose levels link to HAP1, a transcriptional activator on
chromosome 12 that contains a functional polymorphism with effects
on gene expression21, but there is no corresponding hot spot for
protein levels.
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a b Figure 3 Peptide levels in parents and segregants. (a) An example of linkage

between the levels of a peptide and the inheritance of a genetic locus. The

levels of peptide AGGECITLDQLAVR, derived from Rpl18A, are shown for

both parents and then for two groups of segregants that were divided on

the basis of inheritance of a specific genetic marker. Those progeny that

inherited the marker from RM11-1a had lower abundance of the peptide

than those that inherited the marker from BY4716, consistent with the

differences between the parents. (b) An example of transgressive

segregation. Levels of peptide NILAESNSSLDNIVK, derived from Mmf1,

are shown for both parents and then for two groups of segregants that were

divided on the basis of inheritance of a specific genetic marker. This linkage

was identified despite the lack of difference between the parents. The y axes

in both panels show relative peptide abundance in arbitrary units, scaled

from 0 (minimum) to 100 (maximum).
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Second, even when the location of the hot spots is shared (on
chromosomes 2, 3 and 13), both the number and the identity of the
proteins that are affected by these hot spots can be markedly different
than those for the transcripts. For example, although 8 proteins are
affected by a locus on chromosome 2 that also affects 42 transcripts,
only 1 of the 8 proteins is represented among the 42 transcripts. The
overlap between transcripts and proteins is more substantial but
nonetheless incomplete for the hot spots on chromosomes 3 and
13, with 5 (of 35 linked proteins and 18 linked transcripts) and 4 (of
25 linked proteins and 7 linked transcripts) genes affected by the
locus at both the protein and transcript levels, respectively. The
fact that the same locus can affect a different set of genes at the
protein and transcript levels implies either that the polymorphism
responsible for the difference in transcript levels is not the same
as that responsible for the difference in protein levels, which is
unlikely because of the precise overlap of the hot spots, or that the
same genetic change manifests itself differently at the transcriptome
and proteome levels. It is also possible that the two detection
methods (microarrays versus mass spectrometry) have different biases
for the changes they can most easily detect, although this is less likely
in the high-quality subset of the data used for linkage analysis.
(For further comparisons of proteome and transcriptome data, see
Supplementary Note.)

Finally, the protein linkages are concentrated in fewer hot spots
than the transcript linkages, indicating that fewer polymorphisms have
large effects on protein abundance than on transcript abundance. This
suggests that any given polymorphism is more likely to affect the
transcriptome than the proteome.

DISCUSSION
It is notable that analysis of a subset of only 278 transcripts identified
virtually all of the hot spots that are observed when all transcripts are
analyzed (Fig. 4b). This finding can be explained with the observation

that relevant genetic differences most often change not one but rather
several transcripts, hot spots being the most extreme example. Our
study of proteome variation in which a single locus often controls the
levels of many proteins (hot spots) indicates that the proteome and
the transcriptome behave similarly in this regard. Furthermore, this
implies that despite testing linkage for only 221 peptides, we might
have identified most or all of the polymorphisms that have important
effects on protein abundance segregating in this cross. This finding
might have implications for the application of global proteome
profiling in other biological systems, including the identification of
disease biomarkers. Because it is likely that disease processes, like
genetic changes at hot spots, alter several proteins, even measurements
that include a relatively limited fraction of the proteome are likely to
provide global insight into proteome perturbation and to identify
relevant disease biomarkers.

We have described a label-free, mass spectrometry–based approach
to the measurement of protein levels in total unfractionated cellular
proteins. We have validated the quantitative accuracy of this approach
through several independent lines of evidence. First, we confirmed the
relative abundance of several proteins by western blotting. Second, we
found reproducible differences in peptide abundance between the
parent strains, demonstrated high heritability of abundance, and
mapped with high confidence specific loci that affect abundance;
none of this would be possible without accurate quantification. Some
of the mapped loci are further validated by their precise coincidence
with loci that affect transcript abundance, which could not have
occurred by chance (P o 0.0001 for coincidence among hot spot
locations). Although we are currently examining only a small fraction
of the proteome, our approach opens the door to myriad proteome
profiling experiments, as was the case in transcriptome profiling with
the introduction of microarrays that examined only a fraction of the
transcriptome. Our results provide a first look at the genetic circuitry
that underlies both proteome and transcriptome diversity in an
outbred population.

METHODS
Protein isolation. Yeast were grown in synthetic complete medium to mid log

phase, washed, and lysed with 10% trichloroacetic acid. The pellet was washed

twice with 90% trichloroacetic acid and proteins were denatured by incubating

for 30 min at 561 in 8 M urea and 10 mM DTT. Cysteines are alkylated by

incubating for 30 min with 15 mM iodoacetamide. Volume was then increased

eightfold with 50 mM NH4HCO3 to dilute urea and DTT and then incubated

overnight at 371 with trypsin and 0.5 mM CaCl2. The reaction was stopped by

addition of 3 ml of glacial acetic acid and peptides were desalted and purified on

a disposable C18 column.

Protein tagging and western blotting. Protein tagging with HA was per-

formed as described27. Western blotting was performed using standard

laboratory procedures.

Liquid chromatography and mass spectrometry. Peptide digests were ana-

lyzed by electrospray ionization in the positive ion mode on a hybrid linear ion
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trap–Fourier transform–ion cyclotron resonance mass spectrometer (LTQ-FT;

Thermo Electron Corp.). Nanoflow HPLC was performed using a Michrom

Bioresources Paradigm MS4B MDLC coupled to a Michrom Paradigm Endur-

ance autosampler. Peptides were trapped and captured using a 300 mm i.d. �
50 mm long precolumn (Michrom) packed with 200 Å (5-mm Magic C18

particles). Peptides were separated on a 100 mm i.d. � 200 mm long analytical

column (Michrom) packed with 100 Å (5 mm C18AQ particles). Electrospray

ionization was achieved using a 50-mm-i.d. tapered stainless steel capillary

(Michrom) located immediately after the analytical column. The voltage was

applied through a stainless steel micro-tee union between the precolumn and

the analytical column. With an injection volume of 10 ml, peptides were loaded

on the precolumn at B30 ml min–1 in H2O/CH3CN (95/05) with 0.1% (v/v)

formic acid. Peptides were eluted using an acetonitrile gradient flowing at

B500 nl min–1 using mobile phase consisting of A, H2O; B, CH3CN; and C,

1.0% (v/v) formic acid. The gradient program was 0–5 min, A (85%), B (5%),

C (10%); 60 min, A (55%), B (35%), C (10%); 65–74 min, A (10%), B (80%),

C (10%); 75 min, A (85%), B (5%), C (10%); 90 min (stop). Ion source

conditions were optimized using a tuning solution composed of caffeine

(Sigma), MetArgPheAla (MRFA; Bachem) and Ultramark 1621 (Lancaster

Synthesis). Injection waveforms for the LTQ-FT linear ion trap and ICR

cell were kept on for all acquisitions. For MS, ICR resolution was set to

100,000 (m/z 400) and ICR ion populations were held at 1 � 106 through the

use of automatic gain control (AGC). For MS/MS in the linear ion trap, the ion

population was set to 1� 104, the precursor isolation width was set to 2 Da, and

the collision energy set to 35%. Data was acquired using an MS ‘survey’ scan in

the ICR followed by MS/MS data-dependent selection of the three most

abundant precursors from the survey scan in the linear ion trap. Singly charged

ions were excluded from data-dependent analysis. Data redundancy was

minimized by excluding previously selected precursor ions (–0.1 Da/+

1.1 Da) for 120 s after their selection for MS/MS. Data were acquired using

Xcalibur, version 1.4 (Thermo).

Peptide sequencing. Peptide mixtures derived from protein digests were

pumped through a chromatography column packed with reverse-phase beads

and electrosprayed into an online MS/MS instrument. The instrument was set

to record the fragmentation pattern of an individual peptide subject to

collision-induced dissociation three times for each scan of unfragmented total

precursor ions. Database search and comparison of the fragmentation patterns

were then used for peptide sequencing using SEQUEST32. PeptideProphet

software was used to score the SEQUEST hits33. In this study we used only

scores that were Z0.99.

Protein quantification. Details of the algorithms and software are available in

the Supplementary Methods. Original Fortran code is available upon request

from D.R.

Peptide abundance comparison between parent strains. Data for the

parents consisted of 1,287 aligned peaks, which corresponded to 1,010 unique

peptides and 376 unique proteins. Each of the two parents (BY and RM) had 0–

8 replicate abundance values for a given peptide. We performed two tailed

t-tests on all peaks for which there were at least four replicate values for

each parent.

Analysis of peptides in the segregants. Data for the segregants consisted of

3,451 aligned peaks, which corresponded to 1,744 unique peptides and 547

unique proteins. We selected the best peak for each unique protein from among

the peaks that had at least 3 of 4 replicate abundance measurements for at least

40 segregants. We needed at least 3 out of 4 replicates to compensate for the

high signal-to-noise ratio inherent to MS analysis, and we needed at least 40

segregants to achieve significant mapping results21. As proteins are usually

represented by more than one peptide, we chose the best peak (peptide) on the

basis of sequence coverage. After this filtering, a set of 221 unique peptides

remained, which corresponded to 278 unique proteins, as 57 peptides exactly

matched two proteins each. (These peptides with two matches all came from

ribosomal proteins that are present in two nearly identical copies.) Heritabil-

ities were computed for the set of 156 peptides with both segregant and

parental data as described21.

Linkage analysis. We performed linkage analysis on the 221 peptides using the

software package R/qtl. Linkage was performed using the scanone function with

default settings. Significance was determined by empirical permutation tests,

with ten permutations of the entire dataset. For local linkages, we treated

duplicate protein matches by testing whether the locus was located near either

gene; none of the six observed local linkages involved duplicates.

Comparisons with transcripts. We performed linkage analysis on a previous

set of expression data23 for the 94 segregants that overlapped with the

segregants used in this study. Correlation between peptide abundance and

transcript abundance was computed for the set of 164 peptides that exactly

matched only one protein each. For linkage comparisons, we used transcripts

that corresponded to each of 278 unique proteins: that is, we included the

transcripts for both proteins in the cases of peptides that exactly matched

two proteins.

Note: Supplementary information is available on the Nature Genetics website.
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