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From the point of view of the genome, meiosis is a 
matter of matching, locking and moving chromo-
somes. These processes are crucial for creating gam-
etes that have the correct number of chromosomes. 
In humans, up to 30% of spontaneous miscarriages 
are estimated to be the result of chromosome mis-
segregation events1. The results of only a few misseg-
regation events are compatible with human life, and 
these include Down (trisomy 21), Turner (mono-
somic for X) and Klinefelter (XXY male) syndromes. 
In most organisms, chromosome missegregation 
events that occur during meiosis result in inviabil-
ity. Although many of the mechanisms and proteins 
that participate in meiotic pairing and segregation 
are evolutionarily conserved, there are definite spe-
cies-to-species differences in the main mechanisms 
used to achieve homologue segregation.

One of the main mechanisms by which homolo-
gous chromosomes are locked together involves 
crossing over, which is the result of recombination 
events that are initiated by double-strand breaks 
(DSBs). It is vitally important that in the face of the 

high frequency of recombination that occurs during 
meiosis, the genome is faithfully maintained. This is 
accomplished by adding specialized layers of regula-
tion on top of the normal homologous recombination 
machinery. However, there is also evidence to indi-
cate that at least some organisms, such as yeast and 
flies, are not entirely dependent on recombination for 
locking their homologous chromosomes together and 
instead can use other mechanisms to distribute their 
chromosomes2.

In this review, we focus on meiosis-specific mech-
anisms that drive interaction between homologous 
chromosomes and how these vary between organ-
isms. We begin with an overview of meiotic events, 
followed by a description and comparison of DSB-
independent and dependent matching and locking 
mechanisms. In particular, we focus on one example 
of diversity amidst the conserved need to match and 
lock homologous chromosomes: the function of 
the Mnd1–Hop2 protein complex. We conclude 
by highlighting some of the future challenges in 
the field.

HOMOLOGOUS CHROMOSOME 
INTERACTIONS IN MEIOSIS: 
DIVERSITY AMIDST CONSERVATION
Jennifer L. Gerton*‡ and R. Scott Hawley*§

Abstract | Proper chromosome segregation is crucial for preventing fertility problems, birth 
defects and cancer. During mitotic cell divisions, sister chromatids separate from each other to 
opposite poles, resulting in two daughter cells that each have a complete copy of the genome. 
Meiosis poses a special problem in which homologous chromosomes must first pair and then 
separate at the first meiotic division before sister chromatids separate at the second meiotic 
division. So, chromosome interactions between homologues are a unique feature of meiosis 
and are essential for proper chromosome segregation. Pairing and locking together of 
homologous chromosomes involves recombination interactions in some cases, but not in 
others. Although all organisms must match and lock homologous chromosomes to maintain 
genome integrity throughout meiosis, recent results indicate that the underlying mechanisms 
vary in different organisms.
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HOLLIDAY JUNCTION
A point at which the strands of 
two dsDNA molecules 
exchange partners, which 
occurs as an intermediate 
during genetic recombination. 

COHESIN
A multi-protein complex that 
maintains tight association of 
sister chromatids.

CHROMOSOME TERRITORY
A domain of the nucleus 
occupied by a pair of 
homologous chromosomes.

CHIASMA
(Pl. chiasmata.) A cytologically 
visible physical connection 
between homologous 
chromosomes that corresponds 
to the position of a meiotic 
cross-over.

Overview of meiotic events
Meiosis is a special set of cell divisions that produces 
gametes in organisms that reproduce sexually. Cells 
enter meiosis in much the same way as they enter 
mitosis — having replicated their chromosomes. 
However, in cells that undergo meiosis, this replica-
tion might involve further specialized features that 
facilitate later phases of meiosis. For example, repli-
cated sister chromatids in both mitosis and meiosis are 
held together by COHESIN; all eukaryotes studied so far 
have meiosis-specific versions of this complex. One 
of the unique aspects of meiosis is that homologous 
chromosomes must be identified and locked together 
in a way that allows them to segregate from each other 
at the first meiotic division (meiosis I). Homologous 
chromosomes in most organisms interact through 
recombination to produce at least one cross-over per 
chromosome so that they can segregate properly at the 
first nuclear division. The segregation of homologues at 
the first meiotic division is followed by the dissolution 
of chromosome cohesion and the segregation of sister 
chromatids at the second meiotic division (meiosis II). 
As there is not an intervening S phase, the result is a 
gamete that contains half the number of chromosomes 
of the starting cell.

What are the mechanisms used to identify homo-
logues and lock them together? Homologue identifica-
tion is perhaps the most mysterious aspect of meiosis. 
It might involve any or all of the following, depending 
on the species: interactions between DNA duplexes, 
interactions between DNA and proteins at specialized 
pairing centres, interactions between centromeres and 
centromeric heterochromatin, interactions between 
telomeres, and CHROMOSOME TERRITORIES. The evidence 
for each of these is discussed below.

Homologues are held together during much of the 
meiotic prophase by a proteinaceous structure known as 
the synaptonemal complex3. A more permanent linkage 
occurs as a result of recombination and the associated 
crossing over of DNA that generates CHIASMATA, the cyto-
logical manifestations of cross-overs. The frequency of 

such reciprocal recombination events is not uniform; 
rather, in some regions of the euchromatin, levels of 
recombination are much higher than in others (het-
erochromatic regions do not undergo crossing over). 
Moreover, when analysed at the DNA-sequence level, 
even those exchanges that occur in recombination-rich 
regions of euchromatin tend to occur at certain places 
in the genome, which are termed recombination 
hotspots, where double-strand breaks occur at a high 
frequency4. In most organisms, homologues are held 
together by both cross-overs and the synaptonemal 
complex, although a few organisms have only the syn-
aptonemal complex, such as Bombyx mori females, 
or only cross-overs, such as Schizosaccharomyces 
pombe.

Besides homologue matching and locking mecha-
nisms, there are other mechanisms that are required for 
correct homologue segregation at the first meiotic divi-
sion, which are the processes that facilitate the correct 
orientation of homologous centromeres on the meiotic 
spindle. However, for the purpose of this review we 
concentrate on mechanisms that promote interactions 
between homologous chromosomes.

Matching of homologues
During the early stages of meiotic prophase, pairs of 
homologous chromosomes are matched by mecha-
nisms that are incompletely understood. The process 
of homologue interaction can be conceptualized as 
increasing degrees of physical association between 
homologues over time, culminating in close, stable 
homologue juxtaposition (FIG. 1). The term alignment 
usually refers to bringing homologous chromosomes 
into rough apposition along their entire length. Pairing 
refers to the intimate association of homologues. 
Synapsis is often used to refer to chromosomes that are 
connected by the synaptonemal complex that comes 
to lie between homologues and connects them along 
their entire length. Homologue matching in some 
species depends on the formation of a set of meiosis-
specific DSBs, which are induced by proteins that are 

Figure 1 | Homologue interactions during meiosis. During chromosome pairing that is independent of double-strand break 
(DSB) formation (alignment), regions of local distortion might allow homology to be sensed. During DSB-dependent homologue 
interactions (pairing and nascent interactions), 3′ single-stranded regions engage in interactions with the homologous 
chromosome. During synapsis and synaptonemal complex (SC) formation, 3′ ssDNA ends stably invade the homologue. The 
synaptonemal complex, a proteinaceous structure, forms between homologous chromosomes. During this phase, the invading 
strand is extended by DNA synthesis. Once the strand is recaptured, a double HOLLIDAY JUNCTION forms. Adapted, with 
permission, from REF. 9 © (2001) Elsevier Science.
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homologous to the Saccharomyces cerevisiae meiosis-
specific sporulation protein (Spo11) and that initiate 
the recombination process; in other species, matching 
can occur by DSB-independent means. Although DSB-
independent processes seem to be sufficient for homo-
logue matching in flies and worms, DSB-dependent 
processes seem to be essential for accurate homologue 
interactions in yeast, Arabidopsis thaliana, mice and 
humans.

DSB-independent matching of homologues
DSB-independent pairing processes seem to be wide-
spread, and at least in some cases, these interactions 
precede DSB-dependent pairing. In S. cerevisiae, for 
example, DSB-independent pairing is detected at the 
beginning of meiosis and then becomes undetectable 
during the meiotic S phase, but pairing is quickly 
re-established in a DSB-independent manner after 
S phase5. The molecular nature of these DSB-inde-
pendent pairing interactions is unclear, but might 
simply involve interactions that are based on homology 
between two DNA duplexes. It has been argued that 
these types of ‘kissing’ interaction would be transient 
and unstable, and would not require an active process 
to dissociate them6. Their stabilization could occur 
through several sites of interaction along the length 
of each chromosome or through stabilizing proteins. 
Live imaging of chromosome movements in S. pombe 
revealed an initial steep increase in homologous 
pairing at the beginning of meiosis in wild-type cells 
and in a mutant lacking DSBs (a mutant for rec12; the 
S. pombe homologue of S. cerevisiae SPO11). This pairing 
was not detected in a meu13 (the S. pombe homologue of 
S. cerevisiae HOP2) mutant, arguing that meu13 might 
have a role in early DSB-independent pairing interac-
tions7. DSB formation soon follows, however, and at 

least in S. cerevisiae, mice and A. thaliana, formation 
of the synaptonemal complex between homologues 
seems to depend on DSBs and is concomitant with 
stable strand invasion — when a single-stranded 
3′ DNA end from one homologue stably invades the 
homologous sequence on the other homologue8–12.

In some organisms, DSB-independent pairing 
processes seem to be sufficient for synapsis and syn-
aptonemal complex formation. Caenorhabditis elegans 
chromosomes enter meiosis unpaired and then undergo 
a rapid alignment. This alignment requires neither the 
initiation of recombination nor the function of proteins 
that will later facilitate synapsis13. Homologue alignment 
and pairing also occur normally in the complete absence 
of DSBs in both sexes of Drosophila melanogaster14,15. In 
D. melanogaster mutants in which recombination levels 
are at least 100-fold below normal, the synaptonemal 
complex assembles perfectly normally between homo-
logues15. Similarly, in the fungus Coprinus cinereus, a 
significant amount of homologue pairing occurs even 
when meiotic DSBs are absent16. The lack of a require-
ment for DSBs to initiate synapsis in these organisms 
probably reflects the ability of flies and worms to use 
other DSB-independent means to mediate homologue 
recognition, such as somatic pairing and the use of 
pairing centres.

Somatic pairing as a basis for homologue pairing. 
One reason that DSBs might not be necessary for 
homologue pairing in D. melanogaster is that the chro-
mosomes are already aligned when meiosis begins. 
Mitotic chromosomes in somatic and germline cells in 
D. melanogaster and other Dipterans have been known 
for almost a century to have high levels of homologue 
pairing17–19. Hexaploid wheat also has somatically paired 
homologues20. Using chromosomes that were tagged 

Table 1 | Methods to monitor homologue interactions

Method Use Advantage Disadvantage

One-dimensional gel 
followed by Southern blot

To monitor DSBs, 
heteroduplex DNA and 
recombination products

Easy to quantify Only monitors one 
genomic locus

Two-dimensional gel 
followed by Southern blot

To monitor the formation of 
single-end invasions and 
joint molecules

Easy to quantify Only monitors one 
genomic locus

Tetrad dissection To monitor recombination 
outcomes and spore 
viability

Can monitor multiple 
chromosome intervals

Monitoring recombination 
requires live meiotic 
products

FISH; GFP–lac  repressor To monitor pairing 
of particular sites on 
homologues (for example, 
centromeres, telomeres or 
individual sites)

An established technique Might require spreading of 
chromosomes; timing can 
be crucial; might only be 
able to monitor one locus 
at a time

Immunostaining To monitor foci formation 
of specific proteins (for 
example, antibodies 
against Dmc1 or Rad51 
identify recombination 
sites)

An established technique Might require spreading of 
chromosomes; timing can 
be crucial

Live chromosome imaging Homologue pairing; 
chromosome movements

Can monitor all 
chromosomes at all times

Technically challenging

FISH, fluorescence in situ hybridization.
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with the GFP–lac repressor protein at different posi-
tions TABLE 1, Vazquez et al. followed the behaviour 
of meiotic chromosomes during male D. melanogaster 
meiosis21. Because meiosis in D. melanogaster males 
occurs in the absence of recombination or a recogniz-
able synaptonemal complex, this is a good system in 
which to study homologue matching and segregation 
in the complete absence of recombination. The results 
indicated that the pairing events observed in male 
meiosis I were simply the result of the continuation of 
previous somatic pairings, and not the result of a meio-
sis-specific mechanism21. The authors proposed that 
heterochromatic associations, including centromere 
associations (see below) or chromatid entanglement, 
might be responsible for the maintenance of homo-
logue association. They also demonstrated that the 
sequestering of paired homologues into chromosome 
territories might have an active role in ensuring the 
specificity of meiotic segregation (see below).

Pairing centres. There is mounting evidence for the 
existence of specific cis-acting sequences that aid homo-
logue identification in worms and flies. In C. elegans, 
specific cis-acting regions, or homologue-recognition 
regions (HRRs), have been identified at the ends of each 
of the 6 chromosomes. Only a piece of a chromosome 
that retains the HRR is capable of recombining with its 
intact homologue22,23. These sites might be required for 
the initiation or maintenance of pairing or synapsis24. 
How they function is still rather mysterious.

A different type of pairing centre is exemplified by 
homologous regions that are used for pairing of oth-
erwise non-homologous chromosomes. Perhaps the 
best example of this type of pairing site is the rDNA 

region of the X and Y chromosomes that mediates sex-
chromosome pairing in D. melanogaster males25–27. A 
pseudoautosomal region on the human X and Y chro-
mosomes, PAR1, could also be considered an example 
of a pairing site or region. Most X and Y chromosomes 
are non-homologous. The PAR1 region is the single 
largest region of homology between the X and Y chro-
mosomes, and it is therefore the site of obligatory pair-
ing and exchange between the HETEROSOMES. The W and 
Z chromosomes in birds are similarly non-homologous 
and their pairing and exchange is regulated by a pseu-
doautosomal region. The sequencing of the platypus 
genome has recently revealed that this organism has 
10 sex chromosomes, which indicates that these 5 pairs 
of heterosomes must each have a unique pseudoau-
tosomal region, or pairing and recombination centre, 
to generate XXXXX gametes for females and YYYYY 
gametes for males28.

Pairing that involves centromeres and heterochroma-
tin. Centromeres and/or pericentric heterochromatin 
might function as a type of pairing centre in the sense 
that these cis-acting regions on each chromosome 
might help homologues to find one another. In an 
interesting exception to the locking of homologous 
chromosomes through recombination, homologues 
that lack cross-overs (non-exchange homologues) in 
D. melanogaster oocytes are matched and segregated 
in meiosis in a way that depends on the pairing of the 
pericentric heterochromatin29,30.

Other organisms also seem to have mechanisms for 
distributing chromosomes in the absence of reciprocal 
exchange, often referred to as distributive mechanisms. 
In S. cerevisiae, a single chromosome pair that does 
not undergo exchange segregates correctly in 90% of 
meioses31–34; this phenomenon also seems to be medi-
ated by centromere association. Centromeres of non-
exchange chromosomes seem to pair in meiosis and 
mediate bipolar attachment to the spindle at the first 
meiotic division35. So, centromeres and pericentric het-
erochromatin might be special cis-acting regions that 
can facilitate homologue segregation in the absence of 
recombination.

Pairing that involves telomeres. Cytogenetic studies 
TABLE 1 of the first meiotic prophase of many organ-
isms have revealed the clustering of telomeres at the 
nuclear periphery during the leptotene–zygotene 
transition36–40 (FIG. 2). Because this configuration, 
known as the chromosomal bouquet, precedes the 
initiation of synapsis, the possibility has been raised 
that this early localization of the telomeres to a small 
region of the nuclear envelope facilitates the align-
ment of homologous chromosomes. Saccharomyces 
cerevisiae strains that contain a mutation in spo11 
(which lack DSBs) or that carry a specific mutation 
in the DNA repair gene rad50 (the rad50S mutants 
make DSBs but cannot further process them) form 
bouquets41, demonstrating that in S. cerevisiae, bou-
quet formation is independent of recombination and 
synapsis38. In a spo11 mutant in Sordaria macrospora, 

Figure 2 | Telomere clusters during meiosis in budding yeast. a | A schematic 
representation of telomere configuration during meiosis in budding yeast. Telomeres are 
released from the nuclear envelope at the time of DNA replication. Through recombination 
initiation in the late leptotene, telomeres reattach to the nuclear envelope. At the 
leptotene–zygotene transition, the telomeres cluster tightly near the spindle pole body in a 
‘bouquet’. At pachytene, telomeres again disperse around the nuclear envelope. Adapted, 
with permission, from Nature REF. 44 © (2005) Macmillan Magazines Ltd. b–f | A confocal 
image of intact Saccharomyces cerevisiae nuclei that are stained with DAPI (blue; indicates 
DNA), FITC (green; indicates telomeres) and rhodamine (red; indicates a cosmid of 
chromosome 11). b | The pre-meiotic nucleus with several peripheral telomere clusters and 
separate cosmid signals. c | The pre-meiotic nucleus with a similar telomere distribution, but 
with associated cosmid signals. d | The meiotic nucleus with telomere clusters and separate 
cosmid signals. e | The meiotic nucleus with clustered telomeres and paired cosmids. f | The 
late meiotic nucleus, with peripheral clustered telomeres and paired cosmids. Reproduced, 
with permission, from REF. 38 © (1999) Company of Biologists Ltd. 
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hybridization (FISH) to 
chromosomes using a probe 
that represents a whole 
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the bouquet also forms normally, arguing that DSBs 
are not needed for this type of chromosome organiza-
tion42. However, spo11 mutants in both S. macrospora 
and budding yeast cannot exit from this phase of 
meiosis38,42. Exogenous DSBs rescue this delay in 
S. macrospora, which indicates that exit is mediated 
by regulatory processes that sense the progression of 
recombination beyond the DSB stage42.

Ndj1, a meiosis-specific telomere protein required 
for bouquet formation, is required for the localization 
of telomeres to the nuclear periphery during meiotic 
prophase in budding yeast. In an ndj1 mutant, linear 
chromosomes (but not ring chromosomes, which lack 
telomeres) missegregate at a high rate36,43. Meiotic 
divisions and synaptonemal complex formation are 
delayed36,43, as is the processing of DSBs into recom-
bination products44. Together, these results have been 
taken to indicate that Ndj1 might facilitate recombi-
nation through its effect on meiotic telomere organi-
zation. It might do this by kinetically facilitating the 
homologue search through contributions to coalign-
ment, or by reducing the effective volume between 
homologous sites in the nucleus45. 

During homologue pairing in S. pombe, the nucleus 
oscillates between the cell poles, a process that is driven 
by ASTRAL MICROTUBULES. During these oscillations, the 
telomeres are clustered at the spindle pole body, located 
at the leading edge of the moving nucleus, and the rest 
of each chromosome follows behind. This oscillatory 
nuclear movement during meiotic prophase depends on 
cytoplasmic dynein46. A mutation in the dynein heavy 
chain gene (dhc1) reduces nuclear movement; conse-
quently, homologous centromeric and arm regions fail 
to associate47. This gene is required for chromosome 
segregation in the presence and absence of recombi-
nation118. Another mutation, in a gene that encodes a 
telomere-binding protein and length regulator, taz1, 
allows association of homologous centromeres, but 
disrupts the association of arm and telomere-proximal 
loci47. In addition, S. pombe mutants that have disrupted 
telomere clustering show reduced recombination48,49, 
which indicates that telomere clustering facilitates the 
homologue alignment that is crucial for recombination. 
In mice and humans, centromere and telomere move-
ments during the early meiotic prophase are associated 
with the onset of chromosome pairing50.

Chromosome territories. Cytogenetic studies in 
several organisms show that different chromo-
somes occupy particular domains or territories in 
the nucleus. The separation of chromosomes into 
domains might facilitate their pairing by effectively 
reducing the volume of the nucleus. A deletion of 
the homologous pairing suppressor locus (ph1b) in 
rye results in a low rate of chromosome synapsis51. 
Comparison of isogenic lines with and without the 
ph1 mutant locus demonstrates similar pre-meiotic 
chromosome arrangement and telomere configura-
tions. However, although homologous chromosomes 
in the wild-type line maintain separate territories in 
the nucleus, they become intermingled in the ph1b 
mutant line51. Furthermore, although centromere 
associations occur in the mutant, unlike in the wild 
type, these associations are non-homologous52.

In the nucleus of D. melanogaster, spermatocyte chro-
mosome territories might also promote the maintenance 
of meiotic pairing 21. CHROMOSOME PAINTING in human 
spermatogonia reveals compacted, largely mutually 
exclusive chromosome territories50, again indicating 
that localization of homologues to a domain might 
aid in maintaining alignment and pairing.

DSB-dependent matching of homologues
In most organisms, the interaction of meiotically 
induced DNA DSBs with matching sequences on 
the homologous chromosome brings homologous 
chromosomes into alignment during the early- to 
mid-leptotene stage. DSBs are made by the topoi-
somerase type II-like protein, Spo11 REFS 53,54. The 
sites of DSB-dependent homologue interactions can 
be seen as ~400-nm bridges between chromosome 
axes55,56 (FIG. 3). These bridges, which probably contain 
a DSB that is already engaged in a nascent interaction 
with its partner DNA, occur in large numbers9,57,58. 
As leptotene proceeds, a small fraction of these 
bridges seem to mature into structures known as 
axial associations that connect the paired lateral 
elements59. These axial associations will eventually 
nucleate the formation of the synaptonemal com-
plex (that is, as synapsis-initiation sites) between 
paired chromosomes. The topic of synaptonemal 
complex formation is beyond the scope of this review, 
but has been the subject of other recent reviews (see 
for example REFS 2,4).

The formation of DSBs might be linked to chro-
matin structure. It has been shown that DSBs tend to 
occur in regions of open chromatin, or regions that are 
hypersensitive to nucleases60–62. They are also positively 
correlated with double promoter regions or head-to-
head promoters in S. cerevisiae63. Binding of transcrip-
tion factors, but not transcription itself, is crucial for 
hotspot activity at certain locations in the genomes of 
yeast and mice64–69.

Certain chromatin states might be specific to meiosis 
or facilitate recombination. Some might promote DSB 
formation, whereas others might follow DSB formation 
to promote resolution of breaks. Recently, it has been 
shown that ubiquitylation of histone H2B is necessary 

Figure 3 | Visualization of chromosomal bridges in Allium fistulosum and Allium cepa 
(plant) meiocytes. The sites of double-strand break (DSB)-dependent homologue interaction 
can be seen as ~400-nm bridges between chromosome axes55,56. These bridges, which 
probably contain a DSB that is already engaged in a nascent interaction with its partner DNA, 
occur in large numbers9,57,58. Their formation depends on the RecA (recombination protein) 
homologues that are expressed in this species. In the next phase of homologue interaction, 
these nascent interactions are converted to stable strand-invasion events. This nucleates the 
formation of the synaptonemal complex (SC). Reproduced, with permission, from REF. 119 © 
(1987) Springer.
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for recruiting and/or stabilizing the DSB-forming 
machinery that contains Spo11 in budding yeast70. 
HIM-17 (high incidence of males due to increased 
X-chromosome loss 17), which is required for the cor-
rect accumulation of histone H3 methylation at lysine 9 
on meiotic prophase chromosomes, is essential for DSB 
formation but dispensable for homologous synapsis in 
C. elegans71. In mammalian cells, regions that contain 
DSBs become phosphorylated on the histone variant 
H2AX (γ-H2AX)72. Although there is certainly a link 
between chromatin structure and homologue pairing 
and recombination, the nature and the hierarchy of 
these events are just beginning to be explored.

The nature of the nascent interactions between a 
DSB and its partner DNA is unclear. Spo11 makes a DSB 
using its catalytic tyrosine to attack the phosphodiester 
backbone of the DNA, creating a covalent bond 
between Spo11 and the 5′ end of the break. The resec-
tion of the 5′ end of the break requires a protein com-
plex that contains the DNA repair proteins, Xrs2, 
Mre11 and Rad50, exposing a 3′ single-stranded tail 
(FIG. 4). This 3′ tail might be involved in paranemic 
interactions (in which one strand is in close proximity 
to the dsDNA with which it shares homology) and 
then increasingly stable plectonemic interactions (in 
which one strand is wound around the dsDNA with 
which it shares homology) with homologous sequences 
before any type of stable strand invasion. The interac-
tions between the 3′ single-stranded tail and duplex 
DNA might constitute a DSB-dependent homology 
search that allows DSB-dependent homologue pair-
ing to occur. As these types of interactions occur in 
several locations along the length of homologous 
chromosomes, they would probably increase the 
extent of homologue pairing. Once several of these 
interactions are established, the chromosome axes 
might become stably aligned56. A homology search is 
probably mediated at least in part by the Escherichia 
coli recombination protein RecA homologues Rad51 
and Dmc1, which are thought to bind to the 3′ single-
stranded DNA tail. RecA has been shown to mediate 
this type of homology recognition73.

Studies in many organisms have shown that synap-
sis depends on DSBs. In yeast, mouse and A. thaliana 
individuals that carry mutations in the SPO11 homo-
logues, the synapsis of homologous chromosomes is 
much reduced or undetectable8,12,74. In the absence of 
Spo11-induced DSBs, synapsis can be restored if DSBs 
are induced by other means, as has been shown experi-
mentally for mutations in SPO11 or its homologues in 
S. cerevisiae, C. cinereus and the mouse12,16,75. It is most 
likely that further processing of the DSBs into recom-
bination intermediates is also required for correct and 
efficient synapsis. Analysis of yeast mutants in which 
the production or processing of DSBs is impaired 
reveals various synaptonemal complex formation 
defects11,76.

Recombination creates a physical association
Stable strand invasion, which can be detected by 
two-dimensional gel electrophoresis9 TABLE 1 or can 

Figure 4 | The molecular mechanism of meiotic 
crossover recombination. Meiotic recombination begins 
with a double-strand break (DSB) made by Spo11 
(a meiosis-specific sporulation protein) through a 
transesterification reaction (see main text for details). The 
5′ ends of this break are resected, leaving stretches of 
3′ ssDNA. This DNA is probably used in a homology search 
that involves the RecA (recombination protein) homologues 
Dmc1 and Rad51. Once the appropriate homologue is 
identified, Dmc1 begins a crossing-over recombination 
event by mediating stable invasion of the homologous 
chromosome using one of the 3′ ends. This is followed by 
DNA synthesis that extends the end of the invading strand, 
and then by recapture of this strand, which generates a joint 
molecule (JM) that contains a double Holliday junction. This 
can then be resolved into a cross-over. The connection 
between two homologous chromosomes through a double 
Holliday junction is crucial for accurate homologue 
segregation at the first meiotic division.
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HETERODUPLEX DNA
DNA that contains a strand 
from each homologue.

be inferred by the presence of HETERODUPLEX DNA77,78, 
occurs at the beginning of synapsis and synaptonemal 
complex formation in S. cerevisiae9. The appearance 
of stable strand-invasion events depends on the E. coli 
RecA homologue Dmc1 REFS 9,79. Both Rad51 and 
Dmc1 have been shown to mediate strand invasion 
in vitro80,81. Other proteins are required for strand 
exchange, including Tid1–Rdh52, Rad52, and Rad54 
(for a detailed review of the role of Rad52 epistasis 
group proteins in recombination and DSB repair 
see REF. 82). The protein complexes Mei5–Sae3 and 
Mnd1–Hop2 have recently been suggested to assist 
in meiotic strand invasion; we will concentrate on 
these newcomers in this review. Stable strand-inva-
sion events can mature into the cross-overs and chi-
asmata that are needed to lock homologues together 
for correct segregation.

Recombination is biased towards interhomologue 
recombination by Red1–Hop1. Once DSBs are made, 
ostensibly they can be resealed, undergo recombina-
tion with the sister chromatid, undergo recombination 
with the homologue or undergo recombination with an 
ectopic location that probably shares some homology. 
Each DSB hotspot is likely to have different frequen-
cies of each fate, but the most likely fate of a DSB is 
recombination with a homologue. Budding yeast con-
tains genes that seem to specifically channel breaks 
into interhomologue recombination. Red1 and Hop1 
are part of the chromosome axis and Mek1 is a meio-
sis-specific serine–threonine kinase83,84. Together, these 
proteins are thought to channel DSBs into a Dmc1-
dependent interhomologue-recombination pathway85. 
In their absence, the number of DSBs is reduced, and 
the remaining DSBs are mainly resolved by intersister 
recombination86. This does not prevent sporulation, 
but spores have poor viability as they lack the cross-
overs necessary to facilitate appropriate homologue 
segregation. At present, it is not clear whether other 
organisms have similar proteins that direct DSBs into 
interhomologue recombination.

The meiotic recombinases Rad51 and Dmc1 and 
Mnd1–Hop2. At least two RecA homologues function 
during meiosis in S. cereviseae. One is Rad51, which 
also participates in homologous recombination in 
mitosis, and some organisms contain multiple para-
logues of this protein. The second protein, Dmc1, is 
a meiosis-specific RecA homologue which is present 
in some organisms87 (see below). Both Rad51 and 
Dmc1 have been shown to mediate strand invasion 
in vitro80,81. Yeast that lack Rad51 can still carry out 
some recombination and form spores, although 
with low efficiency and viability88. However, without 
Dmc1, S. cerevisiae carry out almost no recombina-
tion in meiosis and form extremely small numbers of 
spores79, leading to the proposal that Dmc1 is primarily 
responsible for interhomologue strand invasion during 
meiosis in S. cerevisiae.

In A. thaliana, a mutation in RAD51 has been 
isolated that does not affect any mitotic functions, but 

has defective chromosome pairing and synapsis dur-
ing meiosis89. A mutation in DMC1 results in random 
chromosome segregation and a residual fertility of 
1.5% of the wild type90. In mice, homozygous Rad51 
loss-of-function mutation results in early embryonic 
lethality91,92, whereas Dmc1–/– mice are infertile and 
their chromosomes do not synapse93. So, in many 
organisms, it seems that although RAD51 has a role 
in both mitotic and meiotic homologous recombina-
tion, DMC1 is essential and specific for homologous 
recombination in meiosis.

The Mnd1–Hop2 complex has recently been 
characterized as comprising meiotic genes encoding 
proteins that form a heterodimer, probably through 
predicted coiled-coil domains94,95. The proteins local-
ize to meiotic chromosomes95,96. mnd1 and hop2 
mutants in S. cerevisiae have a similar phenotype to 
dmc1 mutants, in that very little interhomologue 
strand invasion is detected97. Like Dmc1–/– mice, 
Hop2–/– mice are completely infertile, but do not 
have any overt mitotic defects98. Spermatogenesis in 
Hop2–/– mice reaches only the primary spermatocyte 
stage, which is consistent with a defect before the 
first meiotic nuclear division; this is consistent with 
what has been observed in S. cerevisiae. hop2-mutant 
S. cerevisiae show extensive synapsis of chromosomes, 
as measured by staining for the synaptonemal complex 
component Zip1 (molecular ZIPper), but this synapsis 
is non-homologous96. Although synapsis (presumably 
non-homologous) is extensive in an mnd1 mutant, 
16 fully synapsed bivalents were never observed99,100. 
In contrast to the extensive synapsis in a hop2 mutant 
in S. cerevisiae, limited synapsis is seen in chromosome 
spreads of Hop2–/– mouse spermatocytes. Only 25% of 
cells had undergone more than 10% synapsis, most 
of which was non-homologous98. Therefore, mutations 
that affect Mnd1–Hop2 cause a synapsis defect in both 
yeast and mice.

Interestingly, synapsis in a mouse Hop2–/– null 
mutant is more severely affected than it is in a Dmc1–/– 
mutant, in which 61% of cells have undergone at least 
10% synapsis98. The Hop2–/– Dmc1–/– double mutant 
resembles the Hop2 –/– mutant, with 26% of these 
cells having undergone 10% or more synapsis, which 
implies that HOP2 functions upstream of DMC1. 
However, in S. cerevisiae, hop2 dmc1 or hop2 rad51 
double mutants have 40–50% pairing for a given chro-
mosome, similar to the homologue pairing observed 
in a dmc1 or rad51 single mutant, and better than the 
20% that is observed in a hop2 single mutant. This 
result indicates that in terms of homologue pairing, 
Hop2 might function downstream of Dmc1. Although 
these results might indicate true species differences 
in the order of action of Hop2 and Dmc1, another 
interpretation is that Mnd1–Hop2 might have roles 
both upstream and downstream of Dmc1. This issue 
will need to be resolved in future experiments. A com-
mon feature of the mnd1–hop2 mutant phenotype in 
yeast and mice is a defect in homologue pairing and 
synaptonemal complex formation between the wrong 
chromosomes.
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Rad51-mediated
homolgy search

Dmc1–Mei5–
Sae3-mediated
stable strand
invasion

Mnd1–Hop2Dmc1–Mei5–Sae3 Rad51

Mode 1 (e.g. flies, worms) Mode 2 (e.g. yeast, mice, humans)

• DSB-independent homologue matching

• Low ectopic recombination

• No Mnd1–Hop2

• Recombination dependent on Rad51

• DSB-dependent homologue matching

• High ectopic recombination (yeast)

• Mnd1–Hop2

• Recombination dependent on Dmc1

It has been proposed that Mnd1–Hop2 might 
cooperate with Dmc1 to promote stable strand inva-
sion97. Dmc1 and Rad51 form foci in S. cerevisiae 
mnd1 and hop2 mutants95,97,100. Foci of recombination 
proteins (RAD51, DMC1 and RPA) were also observed 
on chromosomes of the mouse Hop2–/– mutant98. So 
recombination proteins can still assemble onto DNA, 
but they seem to be unable to mediate a successful 
extensive homology search or to catalyse stable strand 
invasion. Overexpression of Rad51 (but not Dmc1) sup-
presses defects in meiotic recombination in S. cerevisiae 
hop2 mutants101. Taken together, these results indicate 
that there might be two pathways for recombination-
mediated pairing of homologues — one that depends 
on Rad51 to sense homology and one in which Dmc1 
depends on Mnd1–Hop2 to ensure correct pairing and 
recombination101 (FIG. 5). Consistent with this proposal, 
a recent study showed that a purified Mnd1–Hop2 
heterodimer stimulates the in vitro strand-invasion 
activity of Dmc1 by threefold or more94,120. However, 
in cytological studies, Mnd1–Hop2 does not 

significantly co-localize with Rad51 (which does co-
localize with Dmc1), arguing against a direct interac-
tion of Mnd1–Hop2 with recombination proteins in 
vivo100. The issue of direct versus indirect interactions 
between recombinases and Mnd1–Hop2 will have to 
be determined in future experiments.

Not all organisms have DMC1, HOP2 and MND1 
orthologues. Although mammals, plants, protists and 
yeasts possess these genes, worms, flies and Neurospora 
crassa do not. This phyletic pattern correlates with the 
requirement for DSBs for synapsis and synaptonemal 
complex formation. Synaptonemal complex forma-
tion seems to be dependent on DSBs in yeast and 
mice5,10,12,102. By contrast, in C. elegans and D. mela-
nogaster, synaptonemal complexes form efficiently 
in the absence of the respective Spo11 homologues of 
these species REFS 14,15. As discussed earlier, fly and 
worm chromosomes have specific DNA sequences that 
can facilitate pairing in cis24,103,104. Furthermore, somatic 
pairing of fly chromosomes might alleviate the need for 
other pairing mechanisms during meiosis. Although it 
is possible that flies and worms have genes that serve a 
similar function to Dmc1–Mnd1–Hop2 that cannot be 
identified on the basis of sequence similarity, it seems 
more likely that pairing centres and/or somatic pairing 
can provide effective substitutes for Dmc1–Mnd1–
Hop2-mediated pairing and recombination. In these 
organisms, meiotic recombination depends on Rad51 
homologues.

Mei5–Sae3 assists Dmc1. Mei5 and Sae3 form a 
heterodimer during meiosis that has been proposed 
to interact with Dmc1 REFS 105,106. In mei5, sae3 or 
dmc1 mutants, Rad51 associates with chromosomes, 
but does not seem to subsequently disassociate from 
them. Sporulation, spore viability and crossing over are 
reduced to similar levels in all three mutants. All three 
proteins co-localize on meiotic chromosomes and their 
localization is mutually dependent. Taken together, 
these results indicate that Mei5–Sae3 complexes are 
Dmc1-specific accessory factors required for catalytic 
and structural roles in interhomologue recombination 
during meiosis.

Genome integrity in the face of high levels of recombi-
nation. In S. cerevisiae, recombination rates are elevated 
about 1,000-fold in meiosis as compared with mitosis107. 
Surprisingly, recombination between homologous 
sequences located on homologous chromosomes is 
not particularly favoured over recombination between 
homologous sequences on non-homologous chromo-
somes107–109, making recombination between dispersed 
homologous elements a rather frequent event in 
S. cerevisiae. These types of event could potentially be 
lethal if a translocation, or a dicentric or acentric chro-
mosome is created. However, ectopic recombination 
during meiosis in flies is infrequent110–113. The rapid and 
DSB-independent synapsis and formation of synapton-
emal complexes in flies and worms might help prevent 
the recombination of homologous sequences on 
non-homologous chromosomes in these organisms.

Figure 5 | A model for Rad51, Dmc1–Mei5–Sae3 and 
Mnd1–Hop2 function in meiosis. Dmc1–Mei5–Sae3 
(a recombination protein complex) assembles on 3′ ssDNA 
on one side of a double-strand break (DSB) and the 
recombination protein Rad51 assembles on the other side. 
Dmc1–Mei5–Sae3 and Rad51 might be present in multiple 
copies, in multiprotein complexes or in different multimeric 
forms. In this model, the Rad51-bound end is primarily 
involved in the homology search that identifies the homologous 
chromosome. The interaction between homologous 
chromosomes is stabilized through interactions between 
Mnd1–Hop2 complexes that are likely to be present in multiple 
copies. Once the homologues are engaged in a stable 
interaction, Dmc1–Mei5–Sae3 can initiate a stable strand 
invasion. At this point, the Rad51-containing complex might 
dissociate from the DNA.

Figure 6 | A comparison of the main features of recombination-dependent (mode 2) 
and independent (mode 1) matching and locking of homologous chromosomes. 
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FLUORESCENCE IN SITU 
HYBRIDIZATION
(FISH). A technique in which a 
fluorescently labelled DNA 
probe is used to hybridize with 
and therefore detect a particular 
chromosome or gene with the 
help of fluorescence 
microscopy.

The synapsis of non-homologous chromosomes in a 
hop2 mutant in S. cerevisiae indicates that Mnd1–Hop2 
might normally promote interactions that prevent 
recombination between non-homologous chromo-
somes. It has recently been shown that although ectopic 
recombination between homologous sequences can 
be detected in dmc1, mnd1 and rad51 single mutants, 
mnd1 rad51 and hop2 rad51 double mutants have 
much higher levels of ectopic recombination between 
repetitive sequences, indicating that the proteins that 
these genes encode might normally have a synergistic 
role in preventing these types of potentially deleterious 
events (Henry, Rice and J.L.G., unpublished observa-
tions). Therefore, Mnd1–Hop2, in conjunction with 
recombination proteins, might provide an alternative 
mechanism for helping to prevent ectopic events in the 
absence of rapid and DSB-independent synapsis.

Challenges for the future
Although all sexually reproducing organisms must 
match, lock and segregate their homologues during 
meiosis, it is clear that some organisms rely on certain 
mechanisms more than others. One of the biggest dif-
ferences is that some organisms rely on recombination 
for synapsis (yeast and mice) whereas others apparently 
have other mechanisms that allow for synapsis in the 
absence of recombination (worms and flies, see FIG. 6). 
Still others, such as S. pombe and male D. melanogaster, 
do not form synaptonemal complexes at all. Why and 
how these differences have evolved is an intriguing 
question, and one for which there is no clear expla-
nation. Even within a species there can be extreme 
differences in meiosis between the sexes, such as the 

difference between male D. melanogaster, which does 
not have recombination or synaptonemal complexes 
on any chromosome, and female D. melanogaster, 
which has recombination on at least two and usually 
three of the four chromosomes. However these dif-
ferences arose, the choice of model system helps to 
focus studies on specific mechanisms114. As meiosis 
is studied in more model systems, we will come to 
have a better understanding and appreciation of each 
mechanism.

In terms of physical assays for recombination 
intermediates that are currently available for in vivo 
studies TABLE 1, it is possible to detect DSBs, at least in 
yeast. The next detectable intermediate is stable strand 
invasion. Currently, there is no simple physical assay to 
monitor the progress of the homology search. It is pos-
sible to look at pairing of specific loci by FLUORESCENCE 

IN SITU HYBRIDIZATION (FISH) in chromosome spreads115 
TABLE 1. Unfortunately, this method can give differ-
ent results depending on the spreading technique used, 
the specific loci monitored, and the time at which the 
assay is carried out. It is also possible to look at pairing 
by Cre-mediated recombination of loxP sites placed 
throughout the genome116,117. This method can also 
yield different results depending on the sites that are 
being monitored. One drawback to most of the cyto-
logical methods used until now to monitor homologue 
pairing in meiosis is that they monitor a single locus 
at a time in fixed cells. To fully appreciate homologue 
matching will probably require dynamic methods for 
monitoring homologue interactions in real time in vivo, 
as has been done for one study in D. melanogaster 21 and 
two studies in S. pombe7,47.
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