Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression

Abstract

The cysteine protease cathepsin B (CTSB) is frequently overexpressed in human breast cancer and correlated with a poor prognosis. Genetic deficiency or pharmacological inhibition of CTSB attenuates tumor growth, invasion and metastasis in mouse models of human cancers. CTSB is expressed in both cancer cells and cells of the tumor stroma, in particular in tumor-associated macrophages (TAM). In order to evaluate the impact of tumor- or stromal cell-derived CTSB on Polyoma Middle T (PyMT)-induced breast cancer progression, we used in vivo and in vitro approaches to induce human CTSB overexpression in PyMT cancer cells or stromal cells alone or in combination. Orthotopic transplantation experiments revealed that CTSB overexpression in cancer cells rather than in the stroma affects PyMT tumor progression. In 3D cultures, primary PyMT tumor cells showed higher extracellular matrix proteolysis and enhanced collective cell invasion when CTSB was overexpressed and proteolytically active. Coculture of PyMT cells with bone marrow-derived macrophages induced a TAM-like macrophage phenotype in vitro, and the presence of such M2-polarized macrophages in 3D cultures enhanced sprouting of tumor spheroids. We employed a doxycycline (DOX)-inducible CTSB expression system to selectively overexpress human CTSB either in cancer cells or in macrophages in 3D cocultures. Tumor spheroid invasiveness was only enhanced when CTSB was overexpressed in cancer cells, whereas CTSB expression in macrophages alone did not further promote invasiveness of tumor spheroids. We conclude that CTSB overexpression in the PyMT mouse model promotes tumor progression not by a stromal effect, but by a direct, cancer cell-inherent mode of action: CTSB overexpression renders the PyMT cancers more invasive by increasing proteolytic extracellular matrix protein degradation fostering collective cell invasion into adjacent tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  2. Balkwill F . Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540–550.

    Article  CAS  Google Scholar 

  3. Mao Y, Keller ET, Garfield DH, Shen K, Wang J . Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 2012; 32: 303–315.

    Article  Google Scholar 

  4. Mason SD, Joyce JA . Proteolytic networks in cancer. Trends Cell Biol 2011; 21: 228–237.

    Article  CAS  Google Scholar 

  5. Rawlings ND, Morton FR, Kok CY, Kong JBarrett AJ . MEROPS: the peptidase database. Nucleic Acids Res 2008; 36: D320–D325.

    Article  CAS  Google Scholar 

  6. Tu C, Ortega-Cava CF, Chen G, Fernandes ND, Cavallo-Medved D, Sloane BF et al. Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts. Cancer Res 2008; 68: 9147–9156.

    Article  CAS  Google Scholar 

  7. Jane DT, Morvay L, Dasilva L, Cavallo-Medved D, Sloane BFDufresne MJ . Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH. Biol Chem 2006; 387: 223–234.

    Article  CAS  Google Scholar 

  8. Harbeck N, Alt U, Berger U, Kruger A, Thomssen C, Janicke F et al. Prognostic impact of proteolytic factors (urokinase-type plasminogen activator, plasminogen activator inhibitor 1, and cathepsins B, D, and L) in primary breast cancer reflects effects of adjuvant systemic therapy. Clin Cancer Res 2001; 7: 2757–2764.

    CAS  PubMed  Google Scholar 

  9. Nouh MA, Mohamed MM, El-Shinawi M, Shaalan MA, Cavallo-Medved D, Khaled HM et al. Cathepsin B: a potential prognostic marker for inflammatory breast cancer. J Transl Med 2011; 9: 1.

    Article  CAS  Google Scholar 

  10. Jedeszko C, Sloane BF . Cysteine cathepsins in human cancer. Biol Chem 2004; 385: 1017–1027.

    Article  CAS  Google Scholar 

  11. Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H, Korovin M, Deussing J et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 2006; 66: 5242–5250.

    Article  CAS  Google Scholar 

  12. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 2010; 24: 241–255.

    Article  CAS  Google Scholar 

  13. Ruffell B, Affara NI, Coussens LM . Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33: 119–126.

    Article  CAS  Google Scholar 

  14. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 2009; 16: 91–102.

    Article  CAS  Google Scholar 

  15. Condeelis J, Pollard JW . Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124: 263–266.

    Article  CAS  Google Scholar 

  16. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    Article  CAS  Google Scholar 

  17. Pollard JW . Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 2008; 84: 623–630.

    Article  CAS  Google Scholar 

  18. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 2007; 67: 2649–2656.

    Article  CAS  Google Scholar 

  19. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 2006; 20: 543–556.

    Article  CAS  Google Scholar 

  20. Gopinathan A, Denicola GM, Frese KK, Cook N, Karreth FA, Mayerle J et al. Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut 2012; 61: 877–884.

    Article  CAS  Google Scholar 

  21. Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Müller S et al. Synergistic anti-tumor effects of cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci USA 2010; 107: 2497–2502.

    Article  CAS  Google Scholar 

  22. Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS . RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 2004; 23: 8486–8496.

    Article  CAS  Google Scholar 

  23. Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 2004; 23: 4681–4689.

    Article  CAS  Google Scholar 

  24. Malla RR, Gopinath S, Gondi CS, Alapati K, Dinh DH, Gujrati M et al. Cathepsin B and uPAR knockdown inhibits tumor-induced angiogenesis by modulating VEGF expression in glioma. Cancer Gene Ther 2011; 18: 419–434.

    Article  CAS  Google Scholar 

  25. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 2004; 5: 443–453.

    Article  CAS  Google Scholar 

  26. Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 2011; 25: 2465–2479.

    Article  CAS  Google Scholar 

  27. Withana NP, Blum G, Sameni M, Slaney C, Anbalagan A, Olive MB et al. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 2012; 72: 1199–1209.

    Article  CAS  Google Scholar 

  28. Bell-McGuinn KM, Garfall AL, Bogyo M, Hanahan D, Joyce JA . Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res 2007; 67: 7378–7385.

    Article  CAS  Google Scholar 

  29. Gabrijelcic D, Svetic B, Spaic D, Skrk J, Budihna M, Dolenc I et al. Cathepsins B, H and L in human breast carcinoma. Eur J Clin Chem Clin Biochem 1992; 30: 69–74.

    CAS  PubMed  Google Scholar 

  30. Mohamed MM, Sloane BF . Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 2006; 6: 764–775.

    Article  CAS  Google Scholar 

  31. Rafn B, Nielsen CF, Andersen SH, Szyniarowski P, Corcelle-Termeau E, Valo E et al. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol Cell 2012; 45: 764–776.

    Article  CAS  Google Scholar 

  32. Sevenich L, Werner F, Gajda M, Schurigt U, Sieber C, Muller S et al. Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 2011; 30: 54–64.

    Article  CAS  Google Scholar 

  33. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA . Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148: 3–15.

    Article  CAS  Google Scholar 

  34. Friedl P, Locker J, Sahai E, Segall J . Classifying collective cancer cell invasion. Nat Cell Biol 2012; 14: 777–783.

    Article  Google Scholar 

  35. Keppler DSloane BF . Cathepsin B: multiple enzyme forms from a single gene and their relation to cancer. Enzyme Protein 1996; 49: 94–105.

    Article  Google Scholar 

  36. Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 2011; 6: 594–602.

    Article  CAS  Google Scholar 

  37. Sinha AA, Gleason DF, Deleon OF, Wilson MJ, Sloane BF . Localization of a biotinylated cathepsin B oligonucleotide probe in human prostate including invasive cells and invasive edges by in situ hybridization. Anat Rec 1993; 235: 233–240.

    Article  CAS  Google Scholar 

  38. Maciewicz RA, Etherington DJ . A comparison of four cathepsins (B, L, N and S) with collagenolytic activity from rabbit spleen. Biochem J 1988; 256: 433–440.

    Article  CAS  Google Scholar 

  39. Buck MR, Karustis DG, Day NA, Honn KVSloane BF . Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 1992; 282 (Pt 1): 273–278.

    Article  CAS  Google Scholar 

  40. Heroon Rajagurubandara E, Rudy DL, Chalasani A, Hardaway AL, Podgorsji I . Macrophage Cathepsin K promotes prostate tumor progression in bone. Oncogene 2012; 32: 1580–1593.

    Article  Google Scholar 

  41. Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SF, Csiszar K, Hendrix MJ, Kirschmann DA . Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res 2005; 65: 11429–11436.

    Article  CAS  Google Scholar 

  42. Cavallo-Medved D, Mai J, Dosescu J, Sameni M, Sloane BF . Caveolin–1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 2005; 118: 1493–1503.

    Article  CAS  Google Scholar 

  43. Victor BC, Sloane BF . Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function. Biol Chem 2007; 388: 1131–1140.

    Article  CAS  Google Scholar 

  44. Brisson L, Reshkin SJ, Gore J, Roger S . pH regulators in invadosomal functioning: Proton delivery for matrix tasting. Eur J Cell Biol 2012; 91: 847–860.

    Article  CAS  Google Scholar 

  45. Cesen MH, Pegan K, Spes A, Turk B . Lysosomal pathways to cell death and their therapeutic applications. Exp Cell Res 2012; 318: 1245–1251.

    Article  Google Scholar 

  46. Kallunki T, Olsen OD, Jaattela M . Cancer-associated lysosomal changes: friends or foes? Oncogene 2013; 32: 1995–2004.

    Article  CAS  Google Scholar 

  47. Vasiljeva O, Turk B . Dual contrasting roles of cysteine cathepsins in cancer progression: apoptosis versus tumour invasion. Biochimie 2008; 90: 380–386.

    Article  CAS  Google Scholar 

  48. Fehrenbacher N, Jaattela M . Lysosomes as targets for cancer therapy. Cancer Res 2005; 65: 2993–2995.

    Article  CAS  Google Scholar 

  49. Houseweart MK, Pennacchio LA, Vilaythong A, Peters C, Noebels JL, Myers RM . Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1). J Neurobiol 2003; 56: 315–327.

    Article  CAS  Google Scholar 

  50. Guy CT, Cardiff RD, Muller WJ . Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–961.

    Article  CAS  Google Scholar 

  51. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  Google Scholar 

  52. Baldi P, Long AD . A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 2001; 17: 509–519.

    Article  CAS  Google Scholar 

  53. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I . Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001; 125: 279–284.

    Article  CAS  Google Scholar 

  54. Sameni M, Cavallo-Medved D, Dosescu J, Jedeszko C, Moin K, Mullins SR et al. Imaging and quantifying the dynamics of tumor-associated proteolysis. Clin Exp Metastasis 2009; 26: 299–309.

    Article  CAS  Google Scholar 

  55. Schurigt U, Sevenich L, Vannier C, Gajda M, Schwinde A, Werner F et al. Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model. Biol Chem 2008; 389: 1067–1074.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The CTSB+/0 mice were kindly provided by Dr L. Pennacchio, Genomics Division, Lawrence Berkeley Laboratory, Berkeley, USA. The immortalized macrophage cell line from FVB/n mice was kindly provided by Eike Latz, currently University of Bonn, Germany. We thank Nicole Klemm, Anja Faulhaber and Julia Wolanski for excellent technical assistance. Proteolysis imaging was mainly performed with kind help of the Microscopy, Imaging & Cytometry Resources Core at Wayne State University, Detroit, MI, USA, directed by Dr Kamiar Moin and supported in part by NIH Center grant P30CA22453 to the Karmanos Cancer Institute, Wayne State University. This work was supported by the Excellence Initiative of the German Federal and State Governments (EXC 294 and GSC-4, Spemann Graduate School), and the Deutsche Forschungsgemeinschaft SFB 850 project B7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Reinheckel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bengsch, F., Buck, A., Günther, S. et al. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 33, 4474–4484 (2014). https://doi.org/10.1038/onc.2013.395

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.395

Keywords

This article is cited by

Search

Quick links