Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cbl-independent degradation of Met: ways to avoid agonism of bivalent Met-targeting antibody

Abstract

The Met receptor tyrosine kinase, found to be constitutively activated in many tumors, has become a leading target for cancer therapy. Disruptions in Met downregulation have been associated with aggressive tumor progression with several therapeutic strategies addressing this aspect of Met biology. Castias B-lineage lymphoma (Cbl) E3 ligase-mediated degradation, which attenuates Met signaling via ligand-dependent Met internalization, is a major negative regulator of Met expression. It is believed that one of the mechanisms by which the therapeutic anti-Met antibodies induce cancer cell death in Met overexpressing tumors is via internalization and subsequent degradation of Met from the cell surface. However, a previously reported Met-targeting antibody demonstrated intrinsic agonistic activity while being capable of inducing Cbl-mediated degradation of Met, suggesting that Cbl-mediated degradation requires receptor activation and impedes therapeutic application. We have developed a potent and selective bivalent Met-targeting antibody (SAIT301) that invokes Met degradation using an alternative regulator LRIG1. In this report, we demonstrate that LRIG1 mediates degradation of Met by SAIT301 and this degradation does not require Met activation. Furthermore, SAIT301 was able to downregulate Met and dramatically inhibit growth of tumors with low or no Cbl expression, as well as tumors with Met exon 14 deletion that prevents Met binding to Cbl. In summary, we demonstrate the enhanced therapeutic potential of a novel tumor-inhibiting anti-Met antibody, SAIT301, which utilizes a Cbl-independent, LRIG1-mediated Met degradation pathway and thereby avoids the agonism that limits the effectiveness of previously reported anti-Met antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Crepaldi T, Pollack AL, Prat M, Zborek A, Mostov K, Comoglio PM . Targeting of the SF/HGF receptor to the basolateral domain of polarized epithelial cells. J Cell Biol 1994; 125: 313–320.

    Article  CAS  Google Scholar 

  2. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 1991; 10: 2867–2878.

    Article  CAS  Google Scholar 

  3. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    Article  CAS  Google Scholar 

  4. Comoglio PM, Boccaccio C . Scatter factors and invasive growth. Semin Cancer Biol 2001; 11: 153–165.

    Article  CAS  Google Scholar 

  5. Trusolino L, Bertotti A, Comoglio PM . MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11: 834–848.

    Article  CAS  Google Scholar 

  6. Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S . The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 2002; 416: 187–190.

    Article  CAS  Google Scholar 

  7. Qin S, Taglienti M, Nauli SM, Contrino L, Takakura A, Zhou J et al. Failure to ubiquitinate c-Met leads to hyperactivation of mTOR signaling in a mouse model of autosomal dominant polycystic kidney disease. J Clin Invest 2010; 120: 3617–3628.

    Article  CAS  Google Scholar 

  8. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 2009; 460: 904–908.

    Article  CAS  Google Scholar 

  9. Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 2003; 63: 6272–6281.

    CAS  Google Scholar 

  10. Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T . Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 2009; 4: 5–11.

    Article  Google Scholar 

  11. Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 2006; 66: 283–289.

    Article  CAS  Google Scholar 

  12. Zang ZJ, Ong CK, Cutcutache I, Yu W, Zhang SL, Huang D et al. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res 2011; 71: 29–39.

    Article  CAS  Google Scholar 

  13. Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 2008; 105: 692–697.

    Article  CAS  Google Scholar 

  14. Lai AZ, Durrant M, Zuo D, Ratcliffe CD, Park M . Met kinase-dependent loss of the E3 ligase Cbl in gastric cancer. J Biol Chem 2012; 287: 8048–8059.

    Article  CAS  Google Scholar 

  15. Lefebvre J, Ancot F, Leroy C, Muharram G, Lemiere A, Tulasne D . Met degradation: more than one stone to shoot a receptor down. FASEB J 2012; 26: 1387–1399.

    Article  CAS  Google Scholar 

  16. Liu X, Newton RC, Scherle PA . Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med 2010; 16: 37–45.

    Article  CAS  Google Scholar 

  17. Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci USA 2006; 103: 2316–2321.

    Article  CAS  Google Scholar 

  18. Foveau B, Ancot F, Leroy C, Petrelli A, Reiss K, Vingtdeux V et al. Down-regulation of the met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis. Mol Biol Cell 2009; 20: 2495–2507.

    Article  CAS  Google Scholar 

  19. Nakagawa T, Tohyama O, Yamaguchi A, Matsushima T, Takahashi K, Funasaka S et al. E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Sci 2010; 101: 210–215.

    Article  CAS  Google Scholar 

  20. Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2012; 2: 270–287.

    Article  CAS  Google Scholar 

  21. Comoglio PM, Giordano S, Trusolino L . Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008; 7: 504–516.

    Article  CAS  Google Scholar 

  22. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM . Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 2009; 15: 2207–2214.

    Article  CAS  Google Scholar 

  23. Peruzzi B, Bottaro DP . Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 2006; 12: 3657–3660.

    Article  CAS  Google Scholar 

  24. Stellrecht CM, Gandhi V . MET receptor tyrosine kinase as a therapeutic anticancer target. Cancer Lett 2009; 280: 1–14.

    Article  CAS  Google Scholar 

  25. Vigna E, Pacchiana G, Mazzone M, Chiriaco C, Fontani L, Basilico C et al. ‘Active’ cancer immunotherapy by anti-Met antibody gene transfer. Cancer Res 2008; 68: 9176–9183.

    Article  CAS  Google Scholar 

  26. Jin H, Yang R, Zheng Z, Romero M, Ross J, Bou-Reslan H et al. MetMAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res 2008; 68: 4360–4368.

    Article  CAS  Google Scholar 

  27. Hedman H, Henriksson R . LRIG inhibitors of growth factor signalling—double-edged swords in human cancer? Eur J Cancer 2007; 43: 676–682.

    Article  CAS  Google Scholar 

  28. Ordonez-Moran P, Huelsken J . Lrig1: a new master regulator of epithelial stem cells. EMBO J 2012; 31: 2064–2066.

    Article  CAS  Google Scholar 

  29. Shattuck DL, Miller JK, Laederich M, Funes M, Petersen H, Carraway KL et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol 2007; 27: 1934–1946.

    Article  CAS  Google Scholar 

  30. Krumbach R, Schuler J, Hofmann M, Giesemann T, Fiebig HH, Beckers T . Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur J Cancer 2011; 47: 1231–1243.

    Article  CAS  Google Scholar 

  31. Oh YM, Song Y, Lee SB, Jeong Y, Kim B, Kim GW et al. A novel anti-c-Met antibody: therapeutic potential in cancer. Mol Cells (accepted).

  32. Stutz MA, Shattuck DL, Laederich MB, Carraway KL, Sweeney C . LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvIII. Oncogene 2008; 27: 5741–5752.

    Article  CAS  Google Scholar 

  33. Wong VW, Stange DE, Page ME, Buczacki S, Wabik A, Itami S et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 2012; 14: 401–408.

    Article  CAS  Google Scholar 

  34. Benvenuti S, Comoglio PM . The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol 2007; 213: 316–325.

    Article  CAS  Google Scholar 

  35. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  36. Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci USA 2006; 103: 5090–5095.

    Article  CAS  Google Scholar 

  37. Pacchiana G, Chiriaco C, Stella MC, Petronzelli F, De Santis R, Galluzzo M et al. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem 2010; 285: 36149–36157.

    Article  CAS  Google Scholar 

  38. Schelter F, Kobuch J, Moss ML, Becherer JD, Comoglio PM, Boccaccio C et al. A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 2010; 285: 26335–26340.

    Article  CAS  Google Scholar 

  39. Ancot F, Leroy C, Muharram G, Lefebvre J, Vicogne J, Lemiere A et al. Shedding-Generated Met Receptor Fragments can be Routed to Either the Proteasomal or the Lysosomal Degradation Pathway. Traffic 2012; 13: 1261–1272.

    Article  CAS  Google Scholar 

  40. Greenall SA, Gherardi E, Liu Z, Donoghue JF, Vitali AA, Li Q et al. Non-agonistic bivalent antibodies that promote c-MET degradation and inhibit tumor growth and others specific for tumor related c-MET. PLoS One 2012; 7: e34658.

    Article  CAS  Google Scholar 

  41. Asaoka Y, Tada M, Ikenoue T, Seto M, Imai M, Miyabayashi K et al. Gastric cancer cell line Hs746T harbors a splice site mutation of c-Met causing juxtamembrane domain deletion. Biochem Biophys Res Commun 2010; 394: 1042–1046.

    Article  CAS  Google Scholar 

  42. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 2007; 104: 20932–20937.

    Article  CAS  Google Scholar 

  43. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–1043.

    Article  CAS  Google Scholar 

  44. Hamburger AW, Salmon SE . Primary bioassay of human tumor stem cells. Science 1977; 197: 461–463.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Korea Healthcare technology R&D project, Ministry for Health & Welfare Affairs, Republic of Korea (A092255). We thank Dr Sangyeul Han for critical discussion and Dr Ogan Gurel for discussion and editing the manuscript. pcDNA-LRIG1 expression plasmid was kindly provided by Dr Håkan Hedman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K A Kim.

Ethics declarations

Competing interests

The following authors are employed by the Samsung Advanced Institute of Technology: Ji Min Lee, Bogyou Kim, Saet Byoul Lee, Yunju Jeong, Young Mi Oh, Yun-Jeong Song, Sooyeon Jung, Jaehyun Choi, Seunghyun Lee, Kwang Ho Cheong, DongUk Kim, Hye Won Park, Geun Woong Kim, Hanna Choi, Paul H Song and Kyung-Ah Kim.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kim, B., Lee, S. et al. Cbl-independent degradation of Met: ways to avoid agonism of bivalent Met-targeting antibody. Oncogene 33, 34–43 (2014). https://doi.org/10.1038/onc.2012.551

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.551

Keywords

This article is cited by

Search

Quick links