Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells

Key Points

  • Renal perfusion pressure, glomerular filtration and net renal sodium reabsorption maintain volume homeostasis

  • Cell stiffness and myogenic tone contribute to peripheral vascular resistance in the presence of aldosterone and normal sodium concentrations in the arterial circulation

  • Structural similarities exist between the amiloride-sensitive sodium channels in the epithelial and endothelial cells

  • Distinctions based on functional differences, especially in response to changes in extracellular sodium concentrations, might permit development of novel pharmacological approaches to differentially target epithelial and endothelial sodium channels

  • Agents that preferentially inhibit the vascular channels could lower systemic blood pressure without the associated inhibition of potassium secretion that accompanies the available sodium channel blockers and mineralocorticoid receptor antagonists

Abstract

Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heteromeric architecture and subunit structure of ENaC.
Figure 2: Model of EnNaC-dependent transition from endothelial function to dysfunction.
Figure 3: Interactions between vascular endothelial cells and smooth muscle cells.

Similar content being viewed by others

References

  1. Rossier, B. C., Staub, O. & Hummler, E. Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett. 587, 1929–1941 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Palmer, L. G., Patel, A. & Frindt, G. Regulation and dysregulation of epithelial Na+ channels. Clin. Exp. Nephrol. 16, 35–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Soundararajan, R., Pearce, D. & Ziera, T. The role of the ENaC-regulatory complex in aldosterone-mediated sodium transport. Mol. Cell Endocrinol. 350, 242–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, J., Kleyman, T. R. & Sheng, S. Gain-of-function variant of the human epithelial sodium channel. Am. J. Physiol. Renal Physiol. 304, F207–F213 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Shimkets, R. A. et al. Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79, 407–414 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Snyder, P. M. et al. Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83, 969–978 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Chang, S. S. et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat. Genet. 12, 248–253 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Warnock, D. G. Liddle syndrome: an autosomal dominant form of human hypertension. Kidney Int. 53, 18–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Rossier, B. C., Pradervand, S., Schild, L. & Hummler, E. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu. Rev. Physiol. 64, 877–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Soundararajan, R., Pearce, D., Hughey, R. P. & Kleyman, T. R. Role of epithelial sodium channels and their regulators in hypertension. J. Biol. Chem. 285, 30363–30369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Donaldson, S. H. & Boucher, R. C. Sodium channels and cystic fibrosis. Chest 132, 1631–1636 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Davis, I. C. & Matalon, S. Epithelial sodium channels in the adult lung--important modulators of pulmonary health and disease. Adv. Exp. Med. Biol. 618, 127–140 (2007).

    Article  PubMed  Google Scholar 

  13. Eaton, D. C., Helms, M. N., Koval, M., Bao, H. F. & Jain, L. The contribution of epithelial sodium channels to alveolar function in health and disease. Annu. Rev. Physiol. 71, 403–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Drummond, H. A., Jernigan, N. L. & Grifoni, S. C. Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis. Hypertension 51, 1265–1271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kusche-Vihrog, K., Callies, C., Fels, J. & Oberleithner, H. The epithelial sodium channel (ENaC): mediator of the aldosterone response in the vascular endothelium? Steroids 75, 544–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kashlan, O. B. & Kleyman, T. R. ENaC structure and function in the wake of a resolved structure of a family member. Am. J. Physiol. Renal Physiol. 301, F684–F696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Canessa, C. M., Merillat, A. M. & Rossier, B. C. Membrane topology of the epithelial sodium channel in intact cells. Am. J. Physiol. Cell Physiol. 267, C1682–C1690 (1994).

    Article  CAS  Google Scholar 

  19. Canessa, C. M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Garty, H. & Palmer, L. G. Epithelial sodium channels: function, structure, and regulation. Physiol. Rev. 77, 359–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ackermann, D. et al. In vivo nuclear translocation of mineralocorticoid and glucocorticoid receptors in rat kidney: differential effect of corticosteroids along the distal tubule. Am. J. Physiol. Renal Physiol. 299, F1473–F1485 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Gaeggeler, H. P. et al. Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone-stimulated sodium transport in a novel renal cell line. J. Am. Soc. Nephrol. 16, 878–891 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Bailey, M. A., Mullins, J. J. & Kenyon, C. J. Mineralocorticoid and glucocorticoid receptors stimulate epithelial sodium channel activity in a mouse model of Cushing syndrome. Hypertension 54, 890–896 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Craigie, E., Evans, L. C., Mullins, J. J. & Bailey, M. A. Failure to downregulate the epithelial sodium channel causes salt sensitivity in Hsd11b2 heterozygote mice. Hypertension 60, 684–690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loffing, J. et al. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am. J. Physiol. Renal Physiol. 280, F675–F682 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Pearce, D. & Kleyman, T. R. Salt, sodium channels, and SGK1. J. Clin. Invest. 117, 592–595 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhalla, V. & Hallows, K. R. Mechanisms of ENaC regulation and clinical implications. J. Am. Soc. Nephrol. 19, 1845–1854 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Briet, M. & Schiffrin, E. L. Aldosterone: effects on the kidney and cardiovascular system. Nat. Rev. Nephrol. 6, 261–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Frindt, G. & Palmer, L. G. Regulation of epithelial Na+ channels by adrenal steroids: mineralocorticoid and glucocorticoid effects. Am. J. Physiol. Renal Physiol. 302, F20–F26 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Masilamani, S., Kim, G. H., Mitchell, C., Wade, J. B. & Knepper, M. A. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J. Clin. Invest. 104, R19–R23 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, W. et al. Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J. Clin. Invest. 117, 773–783 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, S. Y. et al. Epithelial sodium channel regulated by aldosterone-induced protein SGK. Proc. Natl Acad. Sci. USA 96, 2514–2519 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Soundararajan, R., Zhang, T. T., Wang, J., Vandewalle, A. & Pearce, D. A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J. Biol. Chem. 280, 39970–39981 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Soundararajan, R. et al. Scaffold protein connector enhancer of kinase suppressor of Ras isoform 3 (CNK3) coordinates assembly of a multiprotein epithelial sodium channel (ENaC)-regulatory complex. J. Biol. Chem. 287, 33014–33025 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pao, A. C. SGK regulation of renal sodium transport. Curr. Opin. Nephrol. Hypertens. 21, 534–540 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Rohrwasser, A. et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension 34, 1265–1274 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Kobori, H., Nangaku, M., Navar, L. G. & Nishiyama, A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol. Rev. 59, 251–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Peti-Peterdi, J., Warnock, D. G. & Bell, P. D. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J. Am. Soc. Nephrol. 13, 1131–1135 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Jaffe, I. Z. & Mendelsohn, M. E. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 96, 643–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Di Zhang, A. et al. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension 52, 1060–1067 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Jain, G., Campbell, R. C. & Warnock, D. G. Mineralocorticoid receptor blockers and chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1685–1691 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Rautureau, Y., Paradis, P. & Schiffrin, E. L. Cross-talk between aldosterone and angiotensin signaling in vascular smooth muscle cells. Steroids 76, 834–839 (2011).

    CAS  PubMed  Google Scholar 

  43. Staub, O. et al. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J. 16, 6325–6336 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rotin, D. & Staub, O. Role of the ubiquitin system in regulating ion transport. Pflugers Arch. 461, 1–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Rotin, D. et al. An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J. 13, 4440–4450 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Staub, O. et al. WW domains of NEDD4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 15, 2371–2380 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Snyder, P. M., Olson, D. R. & Thomas, B. C. Serum and glucocorticoid-regulated kinase modulates NEDD4-2-mediated inhibition of the epithelial Na+ channel. J. Biol. Chem. 277, 5–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Debonneville, C. et al. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 20, 7052–7059 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Snyder, P. M., Olson, D. R., Kabra, R., Zhou, R. & Steines, J. C. cAMP and serum and glucocorticoid-inducible kinase (SGK) regulate the epithelial Na+ channel through convergent phosphorylation of Nedd4-2 J. Biol. Chem. 279, 45753–45758 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Bhalla, V. et al. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4–2 by inducing interaction with 14-3-3. Mol. Endocrinol. 19, 3073–3084 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Ichimura, T. et al. 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J. Biol. Chem. 280, 13187–13194 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Shi, H. et al. Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK-mediated Phosphorylation. J. Biol. Chem. 277, 13539–13547 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, L. M., Rinke, R. & Korbmacher, C. Stimulation of the epithelial sodium channel (ENaC) by cAMP involves putative ERK phosphorylation sites in the C termini of the channel's beta- and gamma-subunit. J. Biol. Chem. 281, 9859–9868 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Soundararajan, R., Melters, D., Shih, I. C., Wang, J. & Pearce, D. Epithelial sodium channel regulated by differential composition of a signaling complex. Proc. Natl Acad. Sci. USA 106, 7804–7809 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Butterworth, M. B. et al. The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel. J. Biol. Chem. 282, 37885–37893 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Fakitsas, P. et al. Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation. J. Am. Soc. Nephrol. 18, 1084–1092 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Ke, Y., Butt, A. G., Swart, M., Liu, Y. F. & McDonald, F. J. COMMD1 downregulates the epithelial sodium channel through Nedd4-2. Am. J. Physiol. Renal Physiol. 298, F1445–F1456 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Chang, T., Ke, Y., Ly, K. & McDonald, F. J. COMMD1 regulates the delta epithelial sodium channel (δENaC) through trafficking and ubiquitination. Biochem. Biophys. Res. Commun. 411, 506–511 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, R. et al. Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel. J. Biol. Chem. 288, 5389–5397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pouly, D. et al. Mice carrying ubiquitin-specific protease 2 (Usp2) gene inactivation maintain normal sodium balance and blood pressure. Am. J. Physiol. Renal Physiol. 305, F21–F30 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, Y. F., Swart, M., Ke, Y., Ly, K. & McDonald, F. J. Functional interaction of COMMD3 and COMMD9 with the epithelial sodium channel. Am. J. Physiol. Renal Physiol. 305, F80–F89 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Ly, K. et al. Regulation of the delta and alpha epithelial sodium channel (ENaC) by ubiquitination and Nedd8. J. Cell Physiol. 228, 2190–2201 (2013).

    Article  CAS  Google Scholar 

  63. Yue, G., Malik, B., Yue, G. & Eaton, D. C. Phosphatidylinositol 4, 5-bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells. J. Biol. Chem. 277, 11965–11969 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Helms, M. N. et al. Phosphatidylinositol 3,4,5-trisphosphate mediates aldosterone stimulation of epithelial sodium channel (ENaC) and interacts with gamma-ENaC. J. Biol. Chem. 280, 40885–40891 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Tong, Q., Gamper, N., Medina, J. L., Shapiro, M. S. & Stockand, J. D. Direct activation of the epithelial Na+ channel by phosphatidylinositol 3,4, 5-trisphosphate and phosphatidylinositol 3,4-bisphosphate produced by phosphoinositide 3-OH kinase. J. Biol. Chem. 279, 22654–22663 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Pochynyuk, O., Tong, Q., Staruschenko, A. & Stockand, J. D. Binding and direct activation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. J. Physiol. 580, 365–372 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pochynyuk, O. et al. Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J. Biol. Chem. 283, 36599–36607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pochynyuk, O. et al. Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone. FASEB J. 24, 2056–2065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vallon, V. & Rieg, T. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am. J. Physiol. Renal Physiol. 301, F463–F475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mueller, G. M. et al. Cys palmitoylation of the beta subunit modulates gating of the epithelial sodium channel. J. Biol. Chem. 285, 30453–30462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mueller, G. M. et al. Multiple residues in the distal C terminus of the α-subunit have roles in modulating human epithelial sodium channel activity. Am. J. Physiol. Renal Physiol. 303, F220–F228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stockand, J. D., Staruschenko, A., Pochynyuk, O., Booth, R. E. & Silverthorn, D. U. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure. IUBMB Life 60, 620–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Kashlan, O. B. et al. Constraint-based, homology model of the extracellular domain of the epithelial Na+ channel α subunit reveals a mechanism of channel activation by proteases. J. Biol. Chem. 286, 649–660 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Jasti, J., Furukawa, H., Gonzales, E. B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449, 316–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Gonzales, E. B., Kawate, T. & Gouaux, E. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460, 599–604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baconguis, I. & Gouaux, E. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 489, 400–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dawson, R. J. et al. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat. Commun. 3, 936 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Kleyman, T. R., Carattino, M. D. & Hughey, R. P. ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J. Biol. Chem. 284, 20447–20451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kashlan, O. B. & Kleyman, T. R. Epithelial Na+ channel regulation by cytoplasmic and extracellular factors. Exp. Cell Res. 318, 1011–1019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hughey, R. P. et al. Epithelial sodium channels are activated by furin-dependent proteolysis. J. Biol. Chem. 279, 18111–18114 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Caldwell, R. A., Boucher, R. C. & Stutts, M. J. Serine protease activation of near-silent epithelial Na+ channels. Am. J. Physiol. Cell Physiol. 286, C190–C194 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Bruns, J. B. et al. Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J. Biol. Chem. 282, 6153–6160 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carattino, M. D. et al. The epithelial Na+ channel is inhibited by a peptide derived from proteolytic processing of its alpha subunit. J. Biol. Chem. 281, 18901–18907 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Rossier, B. C. & Stutts, M. J. Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu. Rev. Physiol. 71, 361–379 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Passero, C. J. et al. TMPRSS4-dependent activation of the epithelial sodium channel requires cleavage of the γ-subunit distal to the furin cleavage site. Am. J. Physiol. Renal Physiol. 302, F1–F8 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Passero, C. J. et al. Plasmin activates epithelial Na+ channels by cleaving the gamma subunit. J. Biol. Chem. 283, 36586–36591 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Adebamiro, A., Cheng, Y., Rao, U. S., Danahay, H. & Bridges, R. J. A segment of gamma ENaC mediates elastase activation of Na+ transport. J. Gen. Physiol. 130, 611–629 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Haerteis, S. et al. Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the γ subunit of the human epithelial sodium channel. J. Gen. Physiol. 140, 375–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kota, P. et al. Energetic and structural basis for activation of the epithelial sodium channel by matriptase. Biochemistry 51, 3460–3469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rauh, R. et al. A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J. Physiol. 588, 1211–1225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rauh, R. et al. A mutation in the β-subunit of ENaC identified in a patient with cystic fibrosis-like symptoms has a gain-of-function effect. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L43–L55 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Alli, A. A. et al. Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein. Am. J. Physiol. Renal Physiol. 303, F800–F811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Butterworth, M. B., Zhang, L., Heidrich, E. M., Myerburg, M. M. & Thibodeau, P. H. Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. J. Biol. Chem. 287, 32556–32565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Haerteis, S. et al. Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Arch. 464, 353–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Patel, A. B., Chao, J. & Palmer, L. G. Tissue kallikrein activation of the epithelial Na channel. Am. J. Physiol. Renal Physiol. 303, F540–F550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Passero, C. J., Hughey, R. P. & Kleyman, T. R. New role for plasmin in sodium homeostasis. Curr. Opin. Nephrol. Hypertens. 19, 13–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Svenningsen, P. et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J. Am. Soc. Nephrol. 20, 299–310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Svenningsen, P. et al. Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1733–R1741 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Svenningsen, P., Skott, O. & Jensen, B. L. Proteinuric diseases with sodium retention: is plasmin the link? Clin. Exp. Pharmacol. Physiol. 39, 117–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Chraibi, A. & Horisberger, J. D. Na self inhibition of human epithelial Na channel: temperature dependence and effect of extracellular proteases. J. Gen. Physiol. 120, 133–145 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carattino, M. D., Sheng, S. & Kleyman, T. R. Epithelial Na+ channels are activated by laminar shear stress. J. Biol. Chem. 279, 4120–4126 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Kashlan, O. B. et al. Allosteric inhibition of the epithelial Na+ channel through peptide binding at peripheral finger and thumb domains. J. Biol. Chem. 285, 35216–35223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Abriel, H. & Horisberger, J. D. Feedback inhibition of rat amiloride-sensitive epithelial sodium channels expressed in Xenopus laevis oocytes. J. Physiol. 516, 31–43 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Knight, K. K., Wentzlaff, D. M. & Snyder, P. M. Intracellular sodium regulates proteolytic activation of the epithelial sodium channel. J. Biol. Chem. 283, 27477–27482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Patel, A. B., Frindt, G. & Palmer, L. G. Feedback inhibition of ENaC during acute sodium loading in vivo. Am. J. Physiol. Renal Physiol. 304, F222–F232 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Arnadottir, J. & Chalfie, M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Shi, S., Carattino, M. D., Hughey, R. P. & Kleyman, T. R. ENaC regulation by proteases and shear stress. Curr. Mol. Pharmacol. 6, 28–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Satlin, L. M., Sheng, S., Woda, C. B. & Kleyman, T. R. Epithelial Na+ channels are regulated by flow. Am. J. Physiol. Renal Physiol. 280, F1010–F1018 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Althaus, M., Bogdan, R., Clauss, W. G. & Fronius, M. Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J. 21, 2389–2399 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Shi, S., Blobner, B. M., Kashlan, O. B. & Kleyman, T. R. Extracellular finger domain modulates the response of the epithelial sodium channel to shear stress. J. Biol. Chem. 287, 15439–15444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shi, S., Carattino, M. D. & Kleyman, T. R. Role of the wrist domain in the response of the epithelial sodium channel to external stimuli. J. Biol. Chem. 287, 44027–44035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shi, S. et al. Base of the thumb domain modulates epithelial sodium channel gating. J. Biol. Chem. 286, 14753–14761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Toney, G. M., Vallon, V. & Stockand, J. D. Intrinsic control of sodium excretion in the distal nephron by inhibitory purinergic regulation of the epithelial Na+ channel. Curr. Opin. Nephrol. Hypertens. 21, 52–60 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Satlin, L. M., Carattino, M. D., Liu, W. & Kleyman, T. R. Regulation of cation transport in the distal nephron by mechanical forces. Am. J. Physiol. Renal Physiol. 291, F923–F931 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Liddle, G. W., Bledsoe, T. & Coopage, W. S. A familial renal disorder simlating primary aldosteronism but with negligible aldosterone secretion. Trans. Assoc. Am. Physicians 76, 199–213 (1963).

    CAS  Google Scholar 

  117. Rossier, B. C. 1996 Homer Smith Award Lecture. Cum grano salis: the epithelial sodium channel and the control of blood pressure. J. Am. Soc. Nephrol. 8, 980–992 (1997).

    CAS  PubMed  Google Scholar 

  118. Cui, Y. et al. Loss of protein kinase C inhibition in the beta-T594M variant of the amiloride-sensitive Na+ channel. Proc. Natl Acad. Sci. USA 94, 9962–9966 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Samaha, F. F. et al. Functional polymorphism in the carboxyl terminus of the alpha-subunit of the human epithelial sodium channel. J. Biol. Chem. 279, 23900–23907 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Tong, Q., Menon, A. G. & Stockand, J. D. Functional polymorphisms in the alpha-subunit of the human epithelial Na+ channel increase activity. Am. J. Physiol. Renal Physiol. 290, F821–F827 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Azad, A. K. et al. Mutations in the amiloride-sensitive epithelial sodium channel in patients with cystic fibrosis-like disease. Hum. Mutat. 30, 1093–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Rao, A. D. et al. Polymorphisms in the serum- and glucocorticoid-inducible kinase 1 gene are associated with blood pressure and renin response to dietary salt intake. J. Hum. Hypertens. 27, 176–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Lang, F. & Voelkl, J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin. Investig. Drugs 22, 701–714 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Dunn, D. M. et al. Common variant of human NEDD4L activates a cryptic splice site to form a frameshifted transcript. J. Hum. Genet. 47, 665–676 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Ishigami, T. et al. NEDD4L protein truncating variant (v13[G./A]: rs4149601) is associated with essential hypertension in a sample of the Japanese population. Geriatr. Gerontol. Int. 7, 114–117 (2007).

    Article  Google Scholar 

  126. Fava, C. et al. 24-h ambulatory blood pressure is linked to chromosome 18q21-22 and genetic variation of NEDD4L associates with cross-sectional and longitudinal blood pressure in Swedes. Kidney Int. 70, 562–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Garrone, N. F., Blazer-Yost, B. L., Weiss, R. B., Lalouel, J. M. & Rohrwasser, A. A human polymorphism affects NEDD4L subcellular targeting by leading to two isoforms that contain or lack a C2 domain. BMC Cell Biol. 10, 26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Oberleithner, H. et al. Human endothelium: target for aldosterone. Hypertension 43, 952–956 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Oberleithner, H., Riethmuller, C., Ludwig, T., Hausberg, M. & Schillers, H. Aldosterone remodels human endothelium. Acta Physiol. (Oxf.) 187, 305–312 (2006).

    Article  CAS  Google Scholar 

  130. Oberleithner, H. et al. Differential action of steroid hormones on human endothelium. J. Cell Sci. 119, 1926–1932 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Oberleithner, H. et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl Acad. Sci. USA 104, 16281–16286 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Golestaneh, N. et al. Mineralocorticoid receptor-mediated signaling regulates the ion gated sodium channel in vascular endothelial cells and requires an intact cytoskeleton. Biochem. Biophys. Res. Commun. 280, 1300–1306 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, S., Meng, F., Mohan, S., Champaneri, B. & Gu, Y. Functional ENaC channels expressed in endothelial cells: a new candidate for mediating shear force. Microcirculation 16, 276–287 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Caprio, M. et al. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ. Res. 102, 1359–1367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wildling, L., Hinterdorfer, P., Kusche-Vihrog, K., Treffner, Y. & Oberleithner, H. Aldosterone receptor sites on plasma membrane of human vascular endothelium detected by a mechanical nanosensor. Pflugers Arch. 458, 223–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Nguyen Dinh Cat, A. et al. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 24, 2454–2463 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Lombes, M., Farman, N., Bonvalet, J. P. & Zennaro, M. C. Identification and role of aldosterone receptors in the cardiovascular system. Ann. Endocrinol. (Paris) 61, 41–46 (2000).

    CAS  Google Scholar 

  138. Hadoke, P. W., Kipari, T., Seckl, J. R. & Chapman, K. E. Modulation of 11beta-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation. Curr. Atheroscler. Rep. 15, 320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, W. et al. Aldosterone signaling modifies capillary formation by human bone marrow endothelial cells. Vascul. Pharmacol. 40, 269–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Kusche-Vihrog, K. et al. Aldosterone and amiloride alter ENaC abundance in vascular endothelium. Pflugers Arch. 455, 849–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Kusche-Vihrog, K., Jeggle, P. & Oberleithner, H. The role of ENaC in vascular endothelum. Pfulgers Arch. http://dx.doi.org/10.1007/s00424-013-1356–1353.

  142. Loffing, J. & Korbmacher, C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch. 458, 111–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Sheng, S., Hallows, K. R. & Kleyman, T. R. in Seldin and Giebisch's The Kidney: Physiology & Pathophysiology (eds Alpern, R. J., Caplan, M. J. & Moe, O. W.) 983–1017 (Academic Press, 2012).

    Google Scholar 

  144. Stan, R. V. et al. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev. Cell 23, 1203–1218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. He, F. J., Markandu, N. D., Sagnella, G. A., de Wardener, H. E. & MacGregor, G. A. Plasma sodium: ignored and underestimated. Hypertension 45, 98–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Suckling, R. J., He, F. J., Markandu, N. D. & MacGregor, G. A. Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int. 81, 407–411 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. de Wardener, H. E., He, F. J. & MacGregor, G. A. Plasma sodium and hypertension. Kidney Int. 66, 2454–2466 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Yee-Moon Wang, A., Lu, Y., Cheung, S., Hiu-Shuen Chan, I. & Wai-Kei Lam, C. Plasma sodium and subclinical left atrial enlargement in chronic kidney disease. Nephrol. Dial. Transplant. 28, 2319–2328 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Korte, S. et al. Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis. Pflugers Arch. 463, 269–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Cook, D. I., Dinudom, A., Komwatana, P., Kumar, S. & Young, J. A. Patch-clamp studies on epithelial sodium channels in salivary duct cells. Cell Biochem. Biophys. 36, 105–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Murdaca, J. et al. Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J. Biol. Chem. 279, 26754–26761 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Oberleithner, H. et al. Potassium softens vascular endothelium and increases nitric oxide release. Proc. Natl Acad. Sci. USA 106, 2829–2834 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Kliche, K., Jeggle, P., Pavenstadt, H. & Oberleithner, H. Role of cellular mechanics in the function and life span of vascular endothelium. Pflugers Arch. 462, 209–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Jeggle, P. et al. Epithelial sodium channel stiffens the vascular endothelium in vitro and in Liddle mice. Hypertension 61, 1053–1059 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Sessa, W. C. eNOS at a glance. J. Cell Sci. 117, 2427–2429 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Lang, F. Stiff endothelial cell syndrome in vascular inflammation and mineralocorticoid excess. Hypertension 57, 146–147 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Perez, F. R. et al. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries. Hypertension 53, 1000–1007 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Li, J. et al. Salt inactivates endothelial nitric oxide synthase in endothelial cells. J. Nutr. 139, 447–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Abiose, A. K. et al. Effect of spironolactone on endothelial function in patients with congestive heart failure on conventional medical therapy. Am. J. Cardiol. 93, 1564–1566 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Druppel, V. et al. Long-term application of the aldosterone antagonist spironolactone prevents stiff endothelial cell syndrome. FASEB J. 27, 3652–3659 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Bellien, J. et al. Arterial stiffness is regulated by nitric oxide and endothelium-derived hyperpolarizing factor during changes in blood flow in humans. Hypertension 55, 674–680 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Smith, P. R., Saccomani, G., Joe, E. H., Angelides, K. J. & Benos, D. J. Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc. Natl Acad. Sci. USA 88, 6971–6975 (1991).

    Article  CAS  PubMed  Google Scholar 

  163. Mazzochi, C., Bubien, J. K., Smith, P. R. & Benos, D. J. The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J. Biol. Chem. 281, 6528–6538 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Ilatovskaya, D. V., Pavlov, T. S., Levchenko, V., Negulyaev, Y. A. & Staruschenko, A. Cortical actin binding protein cortactin mediates ENaC activity via Arp2/3 complex. FASEB J. 25, 2688–2699 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Fels, J., Jeggle, P., Kusche-Vihrog, K. & Oberleithner, H. Cortical actin nanodynamics determines nitric oxide release in vascular endothelium. PLoS ONE 7, e41520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Oda, T., Makino, K., Yamashita, I., Namba, K. & Maeda, Y. Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength. Biophys. J. 80, 841–851 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Drummond, H. A., Gebremedhin, D. & Harder, D. R. Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension 44, 643–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Chung, W. S., Weissman, J. L., Farley, J. & Drummond, H. A. βENaC is required for whole cell mechanically gated currents in renal vascular smooth muscle cells. Am. J. Physiol. Renal Physiol. 304, F1428–F1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Drummond, H. A., Grifoni, S. C. & Jernigan, N. L. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 23, 23–31 (2008).

    CAS  Google Scholar 

  170. McCurley, A. et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18, 1429–1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. McCurley, A. & Jaffe, I. Z. Mineralocorticoid receptors in vascular function and disease. Mol. Cell Endocrinol. 350, 256–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Schluter, T. et al. Amiloride lowers arterial pressure in cyp1a1ren-2 transgenic rats without affecting renal vascular function. J. Hypertens. 28, 2267–2277 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Jernigan, N. L. & Drummond, H. A. Vascular ENaC proteins are required for renal myogenic constriction. Am. J. Physiol. Renal Physiol. 289, F891–F901 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Pradervand, S. et al. Salt restriction induces pseudohypoaldosteronism type 1 in mice expressing low levels of the beta-subunit of the amiloride-sensitive epithelial sodium channel. Proc. Natl Acad. Sci. USA 96, 1732–1737 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. VanLandingham, L. G., Gannon, K. P. & Drummond, H. A. Pressure-induced constriction is inhibited in a mouse model of reduced betaENaC. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R723–R728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, C. T., Chin, S. Y. & Navar, L. G. Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats. Am. J. Physiol. Renal Physiol. 279, F319–F325 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. van Paassen, P., de Zeeuw, D., de Jong, P. E. & Navis, G. Renin inhibition improves pressure natriuresis in essential hypertension. J. Am. Soc. Nephrol. 11, 1813–1818 (2000).

    CAS  PubMed  Google Scholar 

  178. Erbanova, M. et al. Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 27, 575–586 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Speed, J. S. & Pollock, D. M. Endothelin, kidney disease, and hypertension. Hypertension 61, 1142–1145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kittikulsuth, W., Pollock, J. S. & Pollock, D. M. Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II. Am. J. Physiol. Renal Physiol. 303, F659–F666 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Franco, M. et al. Impaired pressure natriuresis resulting in salt-sensitive hypertension is caused by tubulointerstitial immune cell infiltration in the kidney. Am. J. Physiol. Renal Physiol. 304, F982–F990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Grifoni, S. C., Chiposi, R., McKey, S. E., Ryan, M. J. & Drummond, H. A. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC. Am. J. Physiol. Renal Physiol. 298, F285–F292 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Drummond, H. A. et al. Renal inflammation and elevated blood pressure in a mouse model of reduced β-ENaC. Am. J. Physiol. Renal Physiol. 301, F443–F449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Drummond, H. A. βENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension. Front. Physiol. 3, 341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. O'Riordan, T. G. et al. Acute hyperkalemia associated with inhalation of a potent ENaC antagonist: phase 1 trial of GS-9411. J. Aerosol Med. Pulm. Drug Deliv. http://dx.doi.org/10.1089/jamp.2013.1037.

  186. Kolkhof, P. & Borden, S. A. Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics. Mol. Cell Endocrinol. 350, 310–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Ori, Y. et al. Regression of left ventricular hypertrophy in patients with primary aldosteronism/low-renin hypertension on low-dose spironolactone. Nephrol. Dial. Transplant. 28, 1787–1793 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Funder, J. W. Primary aldosteronism and low-renin hypertension: a continuum? Nephrol. Dial. Transplant. 28, 1625–1627 (2013).

    Article  PubMed  Google Scholar 

  189. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  PubMed  Google Scholar 

  191. Zannad, F. et al. Mineralocorticoid receptor antagonists for heart failure with reduced ejection fraction: integrating evidence into clinical practice. Eur. Heart J. 33, 2782–2795 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Meneton, P., Jeunemaitre, X., de Wardener, H. E. & MacGregor, G. A. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol. Rev. 85, 679–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Titze, J. & Ritz, E. Salt and its effect on blood pressure and target organ damage: new pieces in an old puzzle. J. Nephrol. 22, 177–189 (2009).

    CAS  PubMed  Google Scholar 

  194. DuPont, J. J. et al. High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J. Hypertens. 31, 530–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Blasi, E. R. et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 63, 1791–1800 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Oberleithner, H. A physiological concept unmasking vascular salt sensitivity in man. Pflugers Arch. 464, 287–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Studer, R. A., Person, E., Robinson-Rechavi, M. & Rossier, B. C. Evolution of the epithelial sodium channel and the sodium pump as limiting factors of aldosterone action on sodium transport. Physiol. Genomics 43, 844–854 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Weder, A. B. Evolution and hypertension. Hypertension 49, 260–265 (2007).

    Article  PubMed  Google Scholar 

  199. Granger, J. P., Alexander, B. T. & Llinas, M. Mechanisms of pressure natriuresis. Curr. Hypertens. Rep. 4, 152–159 (2002).

    Article  PubMed  Google Scholar 

  200. Zhang, Y. et al. Rapid redistribution and inhibition of renal sodium transporters during acute pressure natriuresis. Am. J. Physiol. 270, F1004–F1014 (1996).

    Article  CAS  PubMed  Google Scholar 

  201. Zhao, M. et al. Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. J. Clin. Invest. 122, 2672–2679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Garland, C. J., Hiley, C. R. & Dora, K. A. EDHF: spreading the influence of the endothelium. Br. J. Pharmacol. 164, 839–852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ambroisine, M. L. et al. Aldosterone-induced coronary dysfunction in transgenic mice involves the calcium-activated potassium (BKCa) channels of vascular smooth muscle cells. Circulation 116, 2435–2443 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. C. Rossier (University of Lausanne, Lausanne, Switzerland) for insightful comments made during the preparation of this Review. The authors are supported by grants from: the National Institutes of Health (DK051391, DK065161 and DK079307) and the Pittsburgh Centre for Kidney Research, T. R. Kleyman; Institut National pour la Santé et Recherche Médicale and the Agence Nationale pour la Recherche (ANR09-BLAN-0156-01), F. Jaisser; Deutsche Forschungsgemeinschaft (1496/4-1; KKU) and Koselleck grant (63/18), H. Oberleithner; the UAB/UCSD O'Brien Centre for Kidney Research (P30 DK079337), D. G. Warnock. H. Oberleithner and K. Kusche-Vihrog gratefully acknowledge the networking activities of EU-COST Action TD 1002 (AFM4NANOMED&BIO).

Author information

Authors and Affiliations

Authors

Contributions

D. G. Warnock, K. Kusche-Vihrog, A. Tarjus, S. Sheng, H. Oberleithner, T. R. Kleyman and F. Jaisser researched data for the article, contributed to writing the article and to review and/or editing of the manuscript before submission. D. G. Warnock, K. Kusche-Vihrog, H. Oberleithner, T. R. Kleyman and F. Jaisser provided a substantial contribution to discussions of the content. T. R. Kleyman and F. Jaisser contributed equally as senior authors of the manuscript.

Corresponding author

Correspondence to David G. Warnock.

Ethics declarations

Competing interests

D. G. Warnock is a consultant for Gilead Sciences and Parion Sciences.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warnock, D., Kusche-Vihrog, K., Tarjus, A. et al. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 10, 146–157 (2014). https://doi.org/10.1038/nrneph.2013.275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing