Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA supercoiling — a global transcriptional regulator for enterobacterial growth?

Key Points

  • An important aspect of growth control in enterobacteria is regulation of production of the translational machinery.

  • Stable RNA (rRNA and tRNA) promoters are unusually dependent on high negative superhelicity for optimal expression. This superhelicity facilitates the wrapping of DNA around the polymerase and enhances its untwisting in the −10 region.

  • Stringent control and growth-rate control of stable RNA transcription are mechanistically distinct and dependent on different, but overlapping, elements of promoter structure.

  • Growth-rate control of a promoter and its dependence on negative superhelicity are correlated, while ppGpp, the effector of the stringent response, is antagonized by high negative superhelicity.

  • The transcription factor FIS acts as a topological homeostat for some stable RNA promoters by locally constraining superhelicity, thereby decreasing the sensitivity of expression to fluctuations in superhelical density.

  • The effective, or available, superhelicity of promoter DNA is determined by competition between abundant nucleoid-associated proteins, which constrain negative supercoils, and RNA polymerase, thereby balancing the compaction and availability of DNA.

  • Transcription regulation during growth-phase transitions is correlated with changes in negative superhelicity, adaptive changes in the RNA polymerase that alter the responses of transcription machinery to supercoiling, and changes in the composition of the nucleoid-associated proteins that affect the availability of negative supercoils.

  • The global control of transcription throughout the life cycle of Escherichia coli can be formalized as an interacting network of gene products and low-molecular-weight effectors that control RNA polymerase selectivity and effective superhelicity.

Abstract

A fundamental principle of exponential bacterial growth is that no more ribosomes are produced than are necessary to support the balance between nutrient availability and protein synthesis. Although this conclusion was first expressed more than 40 years ago, a full understanding of the molecular mechanisms involved remains elusive and the issue is still controversial. There is currently agreement that, although many different systems are undoubtedly involved in fine-tuning this balance, an important control, and in our opinion perhaps the main control, is regulation of the rate of transcription initiation of the stable (ribosomal and transfer) RNA transcriptons. In this review, we argue that regulation of DNA supercoiling provides a coherent explanation for the main modes of transcriptional control — stringent control, growth-rate control and growth-phase control — during the normal growth of Escherichia coli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Idealized pathway for transcription initiation by E. coli RNA polymerase.
Figure 2: Summary of regulatory pathways for the control of RNA polymerase and the effective superhelicity of promoter DNA.
Figure 3: Promoter structure and transcriptional control.
Figure 4: Global regulatory networks.
Figure 5: Alterations in the composition of the RNA polymerase holoenzyme and the nucleoid-associated proteins during the growth cycle of E.coli.

Similar content being viewed by others

References

  1. Browning, D. F. & Busby, S. J. W. The regulation of bacterial transcription initiation. Nature Rev. Microbiol. 2, 57–65 (2004).

    Article  CAS  Google Scholar 

  2. Buckle, M., Pemberton, I. K., Jacquet, M. A. & Buc, H. The kinetics of sigma subunit directed promoter recognition by E. coli RNA polymerase. J. Mol. Biol. 285, 955–964 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Pemberton, I. K., Muskhelishvili, G., Travers, A. A. & Buckle, M. FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. J. Mol. Biol. 318, 651–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Drew, H. R., Weeks, J. R. & Travers, A. A. Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EMBO J. 4, 1025–1032 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spassky, A., Rimsky, S., Buc, H. & Busby, S. Correlation between the conformation of Escherichia coli −10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. EMBO J. 6, 1871–1879 (1988).

    Article  Google Scholar 

  6. Amouyal, M. & Buc, H. Topological unwinding by RNA polymerase of strong and weak promoters: a comparison between the lac wild-type and the UV5 sites of Escherichia coli. J. Mol. Biol. 195, 795–808 (1987). Classic demonstration of the topological partioning between twist and writhe in an RNA polymerase–DNA complex.

    Article  CAS  PubMed  Google Scholar 

  7. Saucier, J. M. & Wang, J. C. Angular alteration of the DNA helix by E. coli RNA polymerase. Nature New Biol. 239, 167–170 (1972).

    Article  CAS  PubMed  Google Scholar 

  8. Rivetti, C., Guthold, M. & Bustamante, C. Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J. 18, 4464–4475 (1999). Atomic force microscopy visualization of DNA wrapping around RNA polymerase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siebenlist, U. RNA polymerase unwinds an 11-base pair segment of a phage T7 promoter. Nature 279, 651–652 (1979).

    Article  CAS  PubMed  Google Scholar 

  10. Jovanovich, S. B. & Lebowitz, J. Estimation of the effect of coumermycin A1 on Salmonella typhimurium promoters by using random operon fusions. J. Bacteriol. 169, 4431–4435 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dorman, C. J., Barr, G. C., Bhriain, N. N. & Higgins, C. F. DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J. Bacteriol. 170, 2816–2826 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun, L. & Fuchs, J. A. Regulation of the Escherichia coli nrd operon: role of DNA supercoiling. J. Bacteriol. 176, 4617–4626 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, Y. & Datta, P. Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12. Mol. Gen. Genet. 247, 764–767 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Mirkin, S. M., Bogdanova, E. S., Gorlenko, Z. M., Gragerov, A. I. & Larionov, O. A. DNA supercoiling and transcription in Escherichia coli: influence of RNA polymerase mutations. Mol. Gen. Genet. 177, 169–175 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Meiklejohn, A. L. & Gralla, J. D. Activation of the lac promoter and its variants. Synergistic effects of catabolite activator protein and supercoiling in vitro. J. Mol. Biol. 207, 661–673 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Borowiec, J. A. & Gralla, J. D. All three elements of the lac ps promoter mediate its response to DNA supercoiling. J. Mol. Biol. 195, 89–97 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Lamond, A. I. Supercoiling response of a bacterial tRNA gene. EMBO J. 4, 501–507 (1985). Direct demonstration of the exquisite sensitivity of a stable RNA promoter to negative supercoiling in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohlsen, K. L. & Gralla, J. D. Interrelated effects of DNA supercoiling, ppGpp, and low salt on melting within the Escherichia coli ribosomal RNA rrnB P1 promoter. Mol. Microbiol. 6, 2243–2251 (1992). In vitro data indicate a connection between the stringent response and negative supercoiling.

    Article  CAS  PubMed  Google Scholar 

  19. Free, A. & Dorman, C. J. Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function. Mol. Microbiol. 14, 151–161 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Nomura, M., Gourse, R. & Baughman, G. Regulation of the synthesis of ribosomes and ribosomal components. Annu. Rev. Biochem. 53, 75–117 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Travers, A. A. Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J. Bacteriol. 141, 973–976 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gourse, R. L., de Boer, H. A. & Nomura, M. DNA determinants of rRNA synthesis in E. coli: growth-rate-dependent regulation, feedback inhibition, upstream activation, antitermination. Cell 44, 197–205 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Figueroa-Bossi, N., Guerin, M., Rahmouni, R., Leng, M. & Bossi, L. The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control. EMBO J. 17, 2359–2367 (1998). Crucial in vivo evidence for a strong link between the stringent response and negative superhelicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schneider, R., Travers, A. & Muskhelishvili, G. The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA. Mol. Microbiol. 38, 167–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Auner, H. et al. Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. J. Mol. Biol. 331, 331–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lamond, A. I. & Travers, A. A. Requirement for an upstream element for optimal transcription of a bacterial tRNA gene. Nature 305, 248–250 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Pemberton, I. K., Muskhelishvili, G., Travers, A. A. & Buckle, M. The GC-rich discriminator region of the tyrT promoter antagonises the formation of stable pre-initiation complexes. J. Mol. Biol. 299, 859–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. McClellan, J. A., Boublikova, P., Palaçek, E. & Lilley, D. M. J. Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc. Natl Acad. Sci. USA 87, 105–113 (1990).

    Article  Google Scholar 

  29. Zechiedrich, E. L. et al. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 275, 8103–8113 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Peter, B. J. et al. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol. 5, R87 (2004). A rigorous identification of genes that are primarily regulated by changes in negative superhelicity.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baaklini, I., Hraiky, C., Rallu, F., Tse-Dinh, Y -C. & Drolet, M. RNase H1 overproduction is required for efficient full-length RNA synthesis in the absence of topisomerase I in Escherichia coli. Mol. Microbiol. 54, 198–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Lim, H. M., Lewis, D. E. A., Lee, H. J., Liu, M. & Adhya, S. Effect of varying the supercoiling of DNA on transcription and its regulation. Biochemistry 42, 10718–10725 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Borek, E., Ryan, A. & Rockenbach, J. Nucleic acid metabolism in relation to the lysogenic phenomenon. J. Bacteriol. 69, 460–467 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stent, G. S. & Brenner, S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc. Natl Acad. Sci. USA 47, 2005–2014 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cashel, M. & Gallant, J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221, 838–841 (1969). A classic.

    Article  CAS  PubMed  Google Scholar 

  36. Cashel, M. Inhibition of RNA polymerase by ppGpp, a nucleotide accumulated during the stringent response to aminoacid starvation in E. coli. Cold Spring Harb. Symp. Quant. Biol. 35, 407–413 (1970).

    Article  CAS  Google Scholar 

  37. van Ooyen, A. J., Gruber, M. & Jorgensen, P. The mechanism of action of ppGpp on rRNA synthesis in vitro. Cell 8, 1–6 (1976).

    Article  Google Scholar 

  38. Travers, A. Modulation of RNA polymerase specificity by ppGpp. Mol. Gen. Genet. 147, 225–232 (1976).

    Article  CAS  PubMed  Google Scholar 

  39. Glass, R. E., Jones, S. T. & Ishihama, A. Genetic studies on the β-subunit of Escherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp. Mol. Gen. Genet. 203, 265–268 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Artsimovitch, I. et al. Structural basis for transcription regulation by alarmone ppGpp. 117, 299–310 (2004). An important crystal structure showing ppGpp binding adjacent to the active site of RNA polymerase.

  41. Lamond, A. I. & Travers, A. A. Genetically separable functional elements mediate the optimal expression and stringent regulation of a bacterial tRNA gene. Cell 40, 319–326 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Kjeldgaard, N. O., Maaløe, O. & Schaechter, M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 607–616 (1958).

    Article  CAS  PubMed  Google Scholar 

  43. Maaløe, O. & Kjeldgaard, N. O. Control of Macromolecular Synthesis, (W. A. Benjamin, New York, 1966).

    Google Scholar 

  44. Travers, A. A., Lamond, A. I. & Weeks, J. R. Alteration of the growth-rate-dependent regulation of Escherichia coli tyrT expression by promoter mutations. J. Mol. Biol. 189, 251–255 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Josaitis, C. A., Gaal, T. & Gourse, R. L. Stringent control and growth-rate-dependent control have nonidentical promoter sequence requirements. Proc. Natl Acad. Sci. USA 92, 1117–1121 (1995). The first indication that growth-rate control and stringent control may differ mechanistically.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pokholok, D. K., Redlak, M., Turnbough, C. L. Jr, Dylla, S. & Holmes, W. M. Multiple mechanisms are used for growth rate and stringent control of leuV transcriptional initiation in Escherichia coli. J. Bacteriol. 181, 5771–5782 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zacharias, M., Goringer, H. U. & Wagner, R. Influence of the GCGC discriminator motif introduced into the ribosomal RNA P2 and tac promoter on growth-rate control and stringent sensitivity. EMBO J. 8, 3357–3363 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muskhelishvili, G., Travers, A. A., Heumann, H. & Kahmann, R. FIS and RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable RNA promoter. EMBO J. 14, 1446–1452 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aiyar, S. E. et al. Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters. J. Mol. Biol. 316, 501–516 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Finkel, S. E. & Johnson, R. C. The FIS protein: it's not just for inversion anymore. Mol. Microbiol. 6, 3166–3175 (1992).

    Article  Google Scholar 

  51. Lazarus, L. R. & Travers, A. A. The E. coli FIS protein is not required for the activation of tyrT transcription on simple nutritional upshift. EMBO J. 12, 2483–2494 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Muskhelishvili, G., Buckle, M., Heumann, H., Kahmann, R. & Travers, A. A. FIS activates sequential steps during transcription initiation at a stable RNA promoter. EMBO J. 16, 3655–3665 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rochman, M., Aviv, M., Glaser, G. & Muskhelishvili, G. Promoter protection by a transcription factor acting as a local topological homeostat. EMBO Rep. 3, 335–360 (2002). A demonstration that a transcriptional activator can directly compensate for changes in negative superhelicity in vivo.

    Article  Google Scholar 

  54. Rochman, M. et al. Buffering of stable RNA promoter activity against promoter relaxation requires a far upstream sequence. Mol. Microbiol. 53, 143–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Revyakin, A., Ebright, R. H. & Strick, T. R. Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc. Natl Acad. Sci. USA 101, 4776–4780 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamming, J., Ab, G. & Gruber, M. E. coli RNA polymerase–rRNA promoter interaction and the effect of ppGpp. Nucleic Acids Res. 8, 3947–3963 (1979).

    Article  Google Scholar 

  57. Heinemann, M. & Wagner, R. Guanosine 3′,5′-bis(diphosphate) (ppGpp)-dependent inhibition of transcription from stringently controlled Escherichia coli promoters can be explained by an altered initiation pathway that traps RNA polymerase. Eur. J. Biochem. 247, 990–999 (1997). Inference of alternative initiation pathways in the presence and absence of ppGpp.

    Article  CAS  PubMed  Google Scholar 

  58. Gourse, R. L. Visualisation and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. Nucleic Acids Res. 19, 4413–4419 (1988).

    Google Scholar 

  59. Barker, M. M., Gaal, T. & Gourse, R. L. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 305, 673–688 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Da Costa, X. J. & Artz, S. W. Mutations that render the promoter of the histidine operon of Salmonella typhimurium insensitive to nutrient-rich medium repression and amino acid downshift. J. Bacteriol. 179, 5211–5217 (1998).

    Article  Google Scholar 

  61. Travers, A. & Muskhelishvili, G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J. Mol. Biol. 279, 1027–1043 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Opel, M. L. et al. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Mol. Microbiol. 53, 665–674 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Hatfield, G. W. & Benham, C. J. DNA topology-mediated control of global gene expression in Escherichia coli. Annu. Rev. Genet. 36, 175–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Friesen, J. D., Fiil, N. P. & von Meyenburg, K. Synthesis and turnover of basal level guanosine tetraphosphate in Escherichia coli. J. Biol. Chem. 250, 304–309 (1975).

    CAS  PubMed  Google Scholar 

  65. Petersen, C. & Moller, L. B. Invariance of the nucleoside triphosphate pools of Escherichia coli with growth rate. J. Biol. Chem. 275, 3931–3935 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Schneider, D. A. & Gourse, R. L. Relationship between growth rate and ATP concentration in Escherichia coli: a bioassay for available cellular ATP. J. Biol. Chem. 279, 8262–8268 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L. Jr & Gourse, R. L. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278, 2092–2097 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Ryals, J., Little, R. & Bremer, H. Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. J. Bacteriol. 151, 1261–1268 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lazzarini, R. A., Cashel, M. & Gallant, J. On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J. Biol. Chem. 246, 4381–4385 (1971).

    CAS  PubMed  Google Scholar 

  70. Gaal, T. & Gourse, R. L. Guanosine 3′-diphosphate 5′-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. Proc. Natl Acad. Sci. USA 87, 5533–5577 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schneider, R., Travers, A., Kutateladze, T. & Muskhelishvili, G. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol. Microbiol. 34, 953–964 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Schneider, D. A. & Gourse, R. L. Changes in Escherichia coli rRNA promoter activity correlate with changes in initiating nucleoside triphosphate and guanosine 5′-diphosphate 3′-diphosphate concentrations after induction of feedback control of ribosome synthesis. J. Bacteriol. 185, 6185–6191 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou, Y. N. & Jin, D. J. The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like 'stringent' RNA polymerases in Escherichia coli. Proc. Natl Acad. Sci. USA 95, 2908–2913 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bartlett, M. S., Gaal, T., Ross, W. & Gourse, R. L. Regulation of rRNA transcription is remarkably robust: FIS compensates for altered nucleoside triphosphate sensing by mutant RNA polymerases at Escherichia coli rrn P1 promoters. J. Bacteriol. 182, 1969–1977 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhi, H., Wang, X., Cabrera, J. E., Johnson, R. C. & Jin, D. J. Fis stabilizes the interaction between RNA polymerase and the ribosomal promoter rrnB P1, leading to transcriptional activation. J. Biol. Chem. 278, 47340–47349 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Little, R., Ryals, J. & Bremer, H. rpoB mutation in Escherichia coli alters control of ribosome synthesis by guanosine tetraphosphate. J. Bacteriol. 154, 787–792 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baralle, F. E. & Travers, A. Phage T4 infection restricts rRNA synthesis by E. coli RNA polymerase. Mol. Gen. Genet. 147, 291–297 (1976).

    Article  CAS  PubMed  Google Scholar 

  78. Sinden, R. R. & Pettijohn, D. E. Torsional tension in intracellular bacteriophage T4 DNA. Evidence that a linear DNA duplex can be supercoiled in vivo. J. Mol. Biol. 162, 659–677 (1982).

    Article  CAS  PubMed  Google Scholar 

  79. Allbright, L. M. & Geiduschek, E. P. Topoisomerization of plasmid DNA in Escherichia coli infected with bacteriophage T4. J. Mol. Biol. 190, 329–341 (1986).

    Article  Google Scholar 

  80. Balke, V. L. & Gralla, J. D. Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J. Bacteriol. 169, 4499–4506 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bordes, P. et al. DNA supercoiling contributes to disconnect σS accumulation from σS-dependent transcription in Escherichia coli. Mol. Microbiol. 48, 561–571 (2003). A direct demonstration that changes in negative superhelicity are an essential component of the exponential to stationary growth-phase transition.

    Article  CAS  PubMed  Google Scholar 

  82. Jensen, P. R., Loman, L., Petra, B., van der Weijden, C. & Westerhoff, H. V. Energy buffering of DNA structure fails when Escherichia coli runs out of substrate. J. Bacteriol. 177, 3420–3426 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marshall, D. G., Bowe, F., Hale, C., Dougan, G. & Dorman, C. J. DNA topology and adaptation of Salmonella typhimurium to an intracellular environment. Phil. Trans. R. Soc. Lond. B 355, 565–574 (2000).

    Article  CAS  Google Scholar 

  84. Jensen, P. R., Van Der Weijden, C. C., Jensen, L. B., Westerhoff, H. V. & Snoep, J. L. Extensive regulation compromises the extent to which DNA gyrase controls DNA supercoiling and growth rate of Escherichia coli. Eur. J. Biochem. 266, 865–877 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Rimsky, S., Zuber, F, Buckle, M. & Buc, H. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 42, 1311–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Rimsky, S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr. Opin. Microbiol. 7, 109–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Dorman, C. J. H-NS: a universal regulator for a dynamic genome. Nature Rev. Microbiol. 2, 391–400 (2004).

    Article  CAS  Google Scholar 

  88. Hulton, C. S. et al. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell. 52, 569–584 (1988).

    Article  Google Scholar 

  89. Swinger, K., Lemberg, K. M., Zhang, Y. & Rice, P. A. Flexible DNA bending in HU-DNA cocrystal structures. EMBO J. 22, 3749–3760 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morales, P., Rouviére-Yaniv, J. & Dreyfus, M. The histone-like protein HU does not obstruct movement of T7 RNA polymerase in Escherichia coli cells but stimulates its activity. J. Bacteriol. 184, 1565–1570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Betermier, M., Galas, D. J. & Chandler, M. Interaction of Fis protein with DNA: bending and specificity of binding. Biochimie 76, 958–967 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Schneider, R. et al. An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res. 29, 5107–5114 (2002).

    Article  Google Scholar 

  93. Claret, L. & Rouviére-Yaniv, J. Regulation of HUα and HUβ by CRP and FIS in Escherichia coli. J. Mol. Biol. 263, 126–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Dorman, C. J. & Deighan, P. Regulation of gene expression by histone-like proteins in bacteria. Curr. Opin. Genet. Dev. 13, 179–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Ninnemann, O., Koch, C. & Kahmann, R. The E. coli fis promoter is subject to stringent control and autoregulation. EMBO J. 11, 1075–1083 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nilsson, L. et al. FIS-dependent trans-activation of stable RNA operons of Escherichia coli under various growth conditions. J. Bacteriol. 174, 921–929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gonzàlez-Gil, G., Kahmann, R. & Muskhelishvili, G. Regulation of crp transcription by oscillation between distinct nucleoprotein complexes. EMBO J. 17, 2877–2885 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nasser, W., Schneider, R., Travers, A. & Muskhelishvili, G. CRP modulates fis transcription by alternate formation of activating and repressing nucleoprotein complexes. J. Biol. Chem. 276, 17878–17886 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Falconi, M., Brandi, A., La Teana, A., Gualerzi, C. O. & Pon, C. L. Antagonistic involvement of FIS and H-NS proteins in the transcriptional control of hns expression. Mol. Microbiol. 19, 965–975 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Bensaid, A., Almeida, A., Drlica, K. & Rouviere-Yaniv, J. Cross-talk between topoisomerase I and HU in Escherichia coli. J. Mol. Biol. 256, 292–300 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Gaston, K., Bell, A., Kolb, A., Buc, H. & Busby, S. Stringent spacing requirements for transcription activation by CRP. Cell 62, 733–743 (1990).

    Article  CAS  PubMed  Google Scholar 

  102. Weinstein-Fischer, D., Elgrably-Weiss, M. & Altuvia, S. Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, topoisomerase I and Fis. Mol. Microbiol. 35, 1413–1420 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Gomez-Gomez, J. M., Baquero, F. & Blazquez, J. Cyclic AMP receptor protein positively controls gyrA transcription and alters DNA topology after nutritional upshift in Escherichia coli. J. Bacteriol. 178, 3331–3334 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Johansson, J. et al. Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p)ppGpp regulons in Escherichia coli. Cell 102, 475–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, Q. & Calvo, J. M. Lrp, a major regulatory protein in Escherichia coli, bends DNA and can organize the assembly of a higher-order nucleoprotein structure. EMBO J. 12, 2495–2501 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Beloin, C. et al. Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J. Biol. Chem. 278, 5333–5342 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Ishihama, A. Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol. 54, 499–518 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Ball, C. A., Osuna, R., Ferguson, K. C. & Johnson, R. C. Dramatic changes in FIS levels upon nutrient upshift in Escherichia coli. J. Bacteriol. 174, 8043–8046 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Claret, L. & Rouvière-Yaniv, J. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long-term survival. J. Mol. Biol. 273, 93–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Conter, A., Menchon, C. & Gutierrez, C. Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J. Mol. Biol. 273, 75–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Hengge-Aronis, R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72, 165–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Jishage, M. & Ishihama, A. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D. J. Bacteriol. 181, 1181–1184 (1999).

    Google Scholar 

  113. Kusano, S., Ding, Q., Fujita, N. & Ishihama, A. Promoter selectivity of Escherichia coli RNA polymerase E σ70 and E σ38 holoenzymes. Effect of DNA supercoiling. J. Biol. Chem. 271, 1998–2004 (1996). First evidence for sigma-factor-dependent RNA polymerase discrimination between supercoiled and relaxed DNA templates.

    Article  CAS  PubMed  Google Scholar 

  114. Igarashi, K., Fujita, N. & Ishihama, A. Promoter selectivity of Escherichia coli RNA polymerase: ω factor is responsible for the ppGpp sensitivity. Nucleic Acids Res. 17, 8755–8765 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gentry, D., Xiao, H., Burgess, R. & Cashel, M. The ω subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. J. Bacteriol. 173, 3901–3903 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Minakhin, L. et al. Bacterial RNA polymerase subunit ω and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl Acad. Sci. USA 98, 892–897 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Murray, H. D., Schneider, D. A. & Gourse, R. L. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell 12, 125–134 (2003). Important but controversial paper presenting evidence for a correlation between rRNA transcription and relative levels of ppGpp and initiating nucleoside triphosphates.

    Article  CAS  PubMed  Google Scholar 

  118. Stupina, V. A. & Wang, J. C. DNA axial rotation and the merge of oppositely supercoiled DNA domains in Escherichia coli; effects of DNA bends. Proc. Natl Acad. Sci. USA 101, 8608–8613 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Deng, S., Stein, R. A. & Higgins, M. P. Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium genome. Proc. Natl Acad. Sci. USA 101, 3398–3403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bowater, R. P., Chen, D. & Lilley, D. M. J. Modulation of tyrT promoter activity by template supercoiling in vivo. EMBO J. 13, 5647–5655 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Apirakaramwong, A. et al. Involvement of ppGpp, ribosome modulation factor, and stationary phase-specific sigma factor σS in the decrease in cell viability caused by spermidine. Biochem. Biophys. Res. Commun. 264, 643–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Tkachenko, A. G. & Nesterova, L. Y. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry (Mosc.) 68, 850–856 (2003).

    Article  CAS  Google Scholar 

  124. Lange, R., Fischer, D. & Hengge-Aronis, R. Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the σS subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 177, 4676–4680 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gentry, D. R., Hernandez, V. J., Nguyen, L. H., Jensen, D. B. & Cashel, M. Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGpp. J. Bacteriol. 175, 7982–7989 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jishage, M., Kvint, K., Shingler, V. & Nystrom, T. Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev. 16, 1260–1270 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Falconi, M., Colonna, B., Prosseda, G., Micheli, G. & Gualerzi, C. O. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J. 17, 7033–7043 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schultz, S. G., Solomon, A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J. Gen. Physiol. 45, 355–369 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schultz, S. G., Epstein, W. & Solomon, A. K. Cation transport in Escherichia coli. IV. Kinetics of net K uptake. J. Gen. Physiol. 47, 329–346 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schneider, D. A., Gaal, T. & Gourse, R. L. NTP-sensing by rRNA promoters in Escherichia coli is direct. Proc. Natl Acad. Sci. USA 99, 8602–8609 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jöres, L. & Wagner, R. Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J. Biol. Chem. 279, 16834–16843 (2003).

    Article  CAS  Google Scholar 

  132. Dayn, A., Malkhosyan, S. & Mirkin, S. M. Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res. 20, 5991–5997 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Haniford, D. B. & Pulleyblank, D. E. Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res. 13, 4344–4363 (1985).

    Article  Google Scholar 

  134. Wu, C. -W. & Goldthwait, D. A. Studies of nucleotide binding to the ribonucleic acid polymerase by a fluorescence technique. Biochemistry 8, 4450–4458 (1969).

    Article  CAS  PubMed  Google Scholar 

  135. Chapman, A. G., Fall, L. & Atkinson, D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J. Bacteriol. 108, 1072–1086 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Brown, L., Gentry, D., Elliott, T. & Cashel, M. DksA affects ppGpp induction of RpoS at a translational level. J. Bacteriol. 184, 4455–4465 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hirsch, M. & Elliott, T. Role of ppGpp in rpoS stationary-phase regulation in Escherichia coli. J. Bacteriol. 184, 5077–5087 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Perederina, A. et al. Regulation through the secondary channel structural framework for ppGpp–DksA synergism during transcription. Cell 118, 297–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Postow, N., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004). A rigorous examination of higher-order structure of supercoiled domains in the E. coli chromosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Valens, M., Penaud, S., Rossignol, M., Cornet, F. & Boccard, F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 23, 4330–4341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jeong, K. S., Ahn, J. & Khodursky, A. B. Spatial partners of transcriptional activity in the chromosome. Genome Biol. 5, R86 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kèpés, F. Periodic transcriptional organization of the E. coli genome. J. Mol. Biol. 340, 957–964 (2004).

    Article  PubMed  CAS  Google Scholar 

  144. Crozat, E., Phillippe, N., Lenski, R. E., Geiselmann, J. & Schneider, D. Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 16 Oct 2004 (10.1534/genetics.104.035717). A direct confirmation of the importance of DNA topology in global transcription regulation in E. coli.

  145. Eymann, C., Homuth, G., Scharf, C. & Hecker, M. Bacillus subtilis functional genomics: global characterisation of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184, 2500–2520 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Azam, A. T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. Growth-phase-dependent variation in protein composition of the E. coli nucleoid. J. Bacteriol. 181, 6361–6370 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Peter, N. Cozzarelli and their colleagues for making available their results prior to publication and G. Mitchison for a very constructive reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus subtilis

Escherichia coli

gppA

gyrA

gyrB

hupA

hupB

leuV

rpoB

rpoC

sbmC

topA

tyrT

SwissProt

CRP

DksA

Dps

FIS

LRP

RpoZ

topoisomerase I

FURTHER INFORMATION

Andrew Travers' laboratory

Georgi Muskhelishvili's laboratory

Glossary

RHEOSTATIC CONTROL

A regulatory process for which the output is continuously variable in contrast to an on–off switch — an analogue rather than a digital response.

CLOSED COMPLEX

The complex that is formed between RNA polymerase and duplex promoter DNA, and precedes the initiation of DNA untwisting.

NUCLEATION

The initiation of DNA untwisting in a promoter. In bacterial promoters nucleation occurs in the −10 region.

OPEN COMPLEX

For transcription, the two strands of the DNA duplex must be unwound locally. An open complex is formed when RNA polymerase binds at a promoter and the duplex around the transcription start site is unwound.

R-LOOPS

An R-loop is formed when an RNA molecule hybridizes with a DNA duplex and takes the form of a bubble in which one half is a DNA–RNA duplex and the other half a single-stranded DNA of the same sequence as the hybridized RNA.

STRINGENT RESPONSE

The cessation of macromolecular synthesis on starvation of bacteria for a required amino acid. The stringent response is signalled by the production of ppGpp by the RelA protein when an uncharged tRNA binds to a ribosome.

GROWTH-RATE CONTROL

The process that coordinates the expression of promoters with the growth rate of a bacterial culture. For stable RNA promoters growth rate and expression are strongly positively correlated.

PLECTONEMIC

In the plectonemic or interwound form of supercoiled DNA, the DNA coils are wrapped around each other (see Box 1). In a circular supercoiled DNA molecule the interwindings are joined by a loop or 'apex' at each end of the structure.

ANTI-SIGMA FACTORS

A negative transcriptional regulator that acts by binding to a sigma factor and preventing its activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Travers, A., Muskhelishvili, G. DNA supercoiling — a global transcriptional regulator for enterobacterial growth?. Nat Rev Microbiol 3, 157–169 (2005). https://doi.org/10.1038/nrmicro1088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1088

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing