Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacotherapy of addictions

A Correction to this article was published on 01 November 2002

Key Points

  • Addiction can be defined as a compulsion to take a drug with loss of control over drug taking, despite its adverse consequences.

  • Although drugs of abuse have different initial targets and actions, the resultant addictions share several features, owing to their common effects on crucial neural circuits:

  • heroin acts primarily on the endogenous opioid system, but also affects the dopaminergic system;

  • cocaine acts primarily on the dopaminergic system, as well as the serotonergic and adrenergic systems, but also affects the opioid system;

  • alcohol affects the dopaminergic, serotonergic and opioid systems.

  • Goals for the treatment of addiction include preventing withdrawal symptoms, reducing drug craving, normalizing any physiological functions that are disrupted by drug use and targeting the treatment agent to a specific site of action, receptor or physiological system that is affected or deranged by the drug of abuse.

  • There are three effective pharmacotherapies for the long-term treatment of heroin addiction (>50% effectiveness in non-selected persons) — the opioid agonists methadone and levo-α-acetylmethadol, and the partial opioid agonist buprenorphine.

  • There are no pharmacotherapies that are effective in unselected groups of cocaine addicts, and so emphasis is placed on this need in this article.

  • Three medications have been shown to be effective in 20–50% of unselected alcoholics — the opioid antagonists naltrexone and nalmefene, and acamprosate, which probably acts as an N-methyl-d-aspartate (NMDA) antagonist.

  • Four groups of therapeutic targets that might be immediately applicable for developing medications are considered: the μ-opioid receptor and its endogenous ligands β-endorphin and the enkephalin peptides; the stress-responsive axis; the components of the dopaminergic system; and the κ-opioid receptor and dynorphin peptides.

Abstract

Addiction to drugs, such as heroin, cocaine and alcohol, exacts great human and financial costs on society, but the development of pharmacotherapies for addiction has been largely neglected by the pharmaceutical industry. With advances in our understanding of the underlying biology of addictions now opening the door for the development of novel pharmacotherapies, it could be time for a reassessment of involvement in this increasingly important therapeutic area. Here, we summarize the current approved and implemented pharmacotherapeutic approaches to the treatment of addiction, and then highlight the most promising areas for future drug development from the perspective of our laboratory and our National Institutes of Health (NIH) National Institute on Drug Abuse (NIDA) Research Center.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors involved in addiction.
Figure 2
Figure 3: Potential targets for new medication development.

Similar content being viewed by others

References

  1. Dole, V. P., Nyswander, M. E. & Kreek, M. J. Narcotic blockade. Arch. Intern. Med. 118, 304–309 (1966).The first report of research leading to the use of methadone in maintenance treatment. These initial rigorous studies document 'blockade' of the effects of the short-acting opiate heroin by the long-acting opioid methadone through the mechanism of cross-tolerance, and propose the fundamental hypothesis that addiction is a disease and not simply a criminal behaviour or personality disorder.

    Article  CAS  PubMed  Google Scholar 

  2. Kreek, M. J. in Improving Drug Abuse Treatment: National Institute of Drug Abuse Research Monograph Series 106 (eds Pickens, R., Leukefeld, C. & Schuster, C. R.) 245–266 (US Govt Print. Off., Washington, DC, 1991).

    Google Scholar 

  3. Kreek, M. J. in Pharmacological Aspects of Drug Dependence: Toward an Integrated Neurobehavioral Approach (eds Schuster, C. R. & Kuhar, M. J.) 487–562 (Springer–Verlag, Berlin, 1996).

    Book  Google Scholar 

  4. Kreek, M. J. in Pharmacological Aspects of Drug Dependence: Toward an Integrated Neurobehavioral Approach (eds Schuster, C. R. & Kuhar, M. J.) 563–598 (Springer–Verlag, Berlin, 1996).

    Book  Google Scholar 

  5. Kreek, M. J. Opiates, opioids and addiction. Mol. Psych. 1, 232–254 (1996).

    CAS  Google Scholar 

  6. Kreek, M. J. Opioid receptors: Some perspectives from early studies of their role in normal physiology, stress responsivity and in specific addictive diseases. J. Neurochem. Res. 21, 1469–1488 (1996).

    Article  CAS  Google Scholar 

  7. Kreek, M. J. in Problems of Drug Dependence, 1999; Proceedings of the 61st Annual Scientific Meeting of the College on Problems of Drug Dependence. National Institute of Drug Abuse Research Monograph Series Pub. No. (ADM) 00-4737,180 (ed. Harris, L. S.) 3–22 (US Govt Print. Off., Washington, DC, 2000).

    Google Scholar 

  8. Kreek, M. J. Methadone-related opioid agonist pharmacotherapy for heroin addiction: history, recent molecular and neurochemical research and the future in mainstream medicine. Ann. NY Acad. Sci. 909, 186–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Meltzer, H. Y. (ed.) Psychopharmacology: The Third Generation of Progress (New York, Raven Press, 1987).

    Google Scholar 

  10. Davis, K. L. (ed.) Psychopharmacology: The Fifth Generation of Progress (Lippincott Williams and Wilkins, Philadelphia) (in the press).

  11. Kreek, M. J. & Koob, G. F. Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend. 51, 23–47 (1998).One of the most rigorous of the recent reviews, including laboratory-based and human studies on the effects of drugs of abuse on the stress-responsive system, resulting in dysregulation of both the HPA axis and possibly other portions of the brain. Also rearticulates the hypothesis that an atypical responsivity to stress and stressors might contribute to the acquisition of and relapse to addictions, as has been shown in animal models after chronic self-administration.

    Article  CAS  PubMed  Google Scholar 

  12. Weiss, F. et al. Compulsive drug-seeking behavior and relapse. Neuroadaptation, stress, and conditioning factors. Ann. NY Acad. Sci. 937, 1–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nature Rev. Neurosci. 2, 695–703 (2001).

    Article  CAS  Google Scholar 

  14. Nestler, E. J. Molecular basis of long-term plasticity underlying addiction. Nature Rev. Neurosci. 2, 119–128 (2001).

    Article  CAS  Google Scholar 

  15. Weiss, F. & Porrino, L. J. Behavioral neurobiology of alcohol addiction: recent advances and challenges. J. Neurosci. 22, 3332–3337 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ritz, M. C., Lamb, R. J., Goldberg, S. R. & Kuhar, M. J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219–1223 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Rocha, B. A. et al. Cocaine self-administration in dopamine-transporter knockout mice. Nature Neurosci. 1, 132–137 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Sora, I. et al. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc. Natl Acad. Sci. USA 95, 7699–7704 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sora, I. et al. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc. Natl Acad. Sci. USA 98, 5300–5305 (2001).The first report to document the lack of cocaine reward in animals in which both the dopamine transporter and the serotonin transporter have been genetically deleted; earlier studies had shown that deletion of the dopamine or the serotonin transporter alone failed to prevent cocaine self-administration or reward.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matthes, H. W. D. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid receptor gene. Nature 383, 819–823 (1996).The first paper after the cloning of the μ-opioid receptor and successful gene deletion of that receptor that documented loss of μ-opioid-receptor analgesia and withdrawal symptoms after chronic opioid treatment, but also loss of reward.

    Article  CAS  PubMed  Google Scholar 

  22. Becker, A. et al. Morphine self-administration in μ-opioid receptor-deficient mice. Naunyn Schmiedebergs Arch. Pharmacol. 361, 584–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Sora, I. et al. Opiate receptor knockout mice define μ-receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc. Natl Acad. Sci. USA 94, 1544–1549 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pettit, H. O., Ettenberg, A., Bloom, F. E. & Koob, G. F. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacol. 84, 167–173 (1984).

    Article  CAS  Google Scholar 

  25. Roberts, A. J. et al. μ-Opioid receptor knockout mice do not self-administer alcohol. J. Pharmacol. Exp. Ther. 293, 1002–1008 (2000).

    CAS  PubMed  Google Scholar 

  26. Roberts, A. J. et al. Increased ethanol self-administration in δ-opioid receptor knockout mice. Alcohol Clin. Exp. Res. 25, 1249–1256 (2001).

    CAS  PubMed  Google Scholar 

  27. Becker, A. et al. Rewarding effects of ethanol and cocaine in μ-opioid receptor-deficient mice. Naunyn Schmiedebergs Arch. Pharmacol. 365, 296–302 (2002).The first paper to show that the rewarding effects of cocaine are significantly attenuated in the absence of an intact μ-opioid receptor; further confirmation that the μ-opioid receptor significantly reduces the rewarding effects of ethanol was also provided.

    Article  CAS  PubMed  Google Scholar 

  28. Hurd, Y. L., Brown, E. E., Finlay, J. M., Fibiger, H. C. & Gerfen, C. R. Cocaine self-administration differentially alters mRNA expression of striatal peptides. Brain Res. Mol. Brain Res. 13, 165–170 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Spangler, R., Unterwald, E. M. & Kreek, M. J. 'Binge' cocaine administration induces a sustained increase of prodynorphin mRNA in rat caudate-putamen. Brain Res. Mol. Brain Res. 19, 323–327 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Daunais, J. B., Roberts, D. C. & McGinty, J. F. Cocaine self-administration increases preprodynorphin, but not c-fos, mRNA in rat striatum. Neuroreport 4, 543–546 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Unterwald, E. M., Rubenfeld, J. M. & Kreek, M. J. Repeated cocaine administration upregulates κ and μ, but not δ, opioid receptors. NeuroReport 5,1613–1616 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Unterwald, E. M., Kreek, M. J. & Cuntapay, M. The frequency of cocaine administration impacts cocaine-induced receptor alterations. Brain Res. 900, 103–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Spangler, R. et al. Prodynorphin, proenkephalin and κ-opioid receptor mRNA responses to acute 'binge' cocaine. Mol. Brain Res. 44, 139–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, X. M. et al. Acute intermittent morphine increases preprodynorphin and κ-opioid receptor mRNA levels in the rat brain. Mol. Brain Res. 66, 184–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Claye, L. H., Maisonneuve, I. M., Yu, J., Ho, A. & Kreek, M. J. Local perfusion of dynorphin A 1–17 reduces extracellular dopamine levels in the nucleus accumbens. NIDA Res. Monogr. 174, 113 (1997).

    Google Scholar 

  36. Zimprich, A. et al. An allelic variation in the human prodynorphin gene promoter alters stimulus-induced expression. J. Neurochem. 74, 472–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, A. C. H. et al. Potentially functional polymorphism in the promoter region of prodynorphin gene may be associated with protection against cocaine dependence or abuse. Am. J. Med. Genet. 114, 429–435 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Swanson, C. J, Baker, D. A., Carson, D., Worley, P. F. & Kalivas, P. W. Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. Neuroscience 21, 9043–9052 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cornish, J. L. & Kalivas, P. W. Cocaine sensitization and craving: differing roles for dopamine and glutamate in the nucleus accumbens. J. Addict. Dis. 20, 43–54 (2001).This paper reviews the state of our knowledge about how the greatly differing effects of dopamine (covered in this review) and glutamate (not covered extensively in this review, but probably another major target for medication development in the near future) are involved in diverse cocaine effects that contribute to addiction and relapse.

    Article  CAS  PubMed  Google Scholar 

  40. McFarland, K. & Kalivas, P. W. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neuroscience 21, 8655–8663 (2001).

    Article  CAS  Google Scholar 

  41. Paul, M., Dewey, S. L., Gardner, E. L., Brodie, J. D. & Ashby, C. R. Jr. γ-Vinyl GABA (GVG) blocks expression of the conditioned place preference response to heroin in rats. Synapse 41, 219–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Gerasimov, M. R. et al. GABAergic blockade of cocaine-associated cue-induced increases in nucleus accumbens dopamine. Eur. J. Pharmacol. 414, 205–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Gerasimov, M. R. et al. γ-Vinyl GABA inhibits methamphetamine, heroin, or ethanol-induced increases in nucleus accumbens dopamine. Synapse 34, 11–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Roberts, D. C., Andrews, M. M. & Vickers, G. J. Baclofen attenuates the reinforcing effects of cocaine in rats. Neuropsychopharmacol. 15, 417–423 (1996).

    Article  CAS  Google Scholar 

  45. Shoaib, M., Swanner, L. S., Beyer, C. E., Goldberg, S. R. & Schindler, C. W. The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav. Pharmacol. 9, 195–206 (1998)

    CAS  PubMed  Google Scholar 

  46. Ling, W., Shoptaw, S. & Majewska, D. Baclofen as a cocaine anti-craving medication: a preliminary clinical study. Letter to the editor. Neuropsychopharmacol. 18, 403–404 (1998).

    Article  CAS  Google Scholar 

  47. Kreek, M. J. Medical safety and side effects of methadone in tolerant individuals. JAMA 223, 665–668 (1973).

    Article  CAS  PubMed  Google Scholar 

  48. Kreek, M. J. in Neuropsychopharmacology: The Fifth Generation of Progress (ed. Davis, K. L.) 1491–1506 (Lippincott Williams and Wilkins, Philadelphia, 2002).

    Google Scholar 

  49. Mathieu-Kia, A. M., Kellogg, S. H., Butelman, E. R. & Kreek, M. J. Nicotine addiction: insights from recent animal studies. Psychopharmacol. 162, 102–118 (2002).

    Article  CAS  Google Scholar 

  50. Dole, V. P. & Nyswander, M. E. A medical treatment for diacetylmorphine (heroin) addiction. JAMA 193, 646 (1965).

    Article  CAS  PubMed  Google Scholar 

  51. Rettig, R. A. & Yarmolinsky, A. (eds) Federal Regulation of Methadone Treatment (National Academy Press, Washington DC,1995).

    Google Scholar 

  52. Kreek, M. J. & Vocci, F. J. The efficacy of methadone and levomethadyl acetate (LAAM). J. Subst. Abuse Treat. (in the press).

  53. McLellan, A. T., Arndt, I. O., Metzger, D. S., Woody, G. E. & O'Brien, C. P. The effects of psychosocial services in substance treatment. JAMA 269, 1953–1959 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Selley, D. E., Liu, Q. & Childers, S. R. Signal transduction correlates of μ-opioid agonist intrinsic efficacy: receptor-stimulated [35S]GTPγS binding in mMOR-CHO cells and rat thalamus. J. Pharmacol. Exp. Ther. 285, 496–505 (1998).

    CAS  PubMed  Google Scholar 

  55. Gorman, A. L., Elliott, K. J. & Inturrisi, C. E. The d and l-isomers of methadone bind to the non-competitive site on the N-methyl-d-aspartate (NMDA) receptor in rat forebrain and spinal cord. Neurosci. Lett. 223, 1–4 (1997).

    Article  Google Scholar 

  56. Davis, A. M. & Inturrisi, C. E. d-Methadone blocks morphine tolerance and N-methyl-d-aspartate (NMDA)-induced hyperalgesia. J. Pharmacol. Exp. Ther. 289, 1048–1053 (1999).

    CAS  PubMed  Google Scholar 

  57. Keith, D. E. et al. μ-Opioid receptor internalization: opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain. Mol. Pharmacol. 53, 377–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Yu, Y. et al. μ-Opioid receptor phosphorylation, desensitization, and ligand efficacy. J. Biol. Chem. 272, 28869–28874 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Altshuler, H. L. Behavioral methods for the assessment of alcohol tolerance and dependence. Drug Alcohol Depend. 4, 333–346 (1979).

    Article  CAS  PubMed  Google Scholar 

  60. Volpicelli, J. R., Alterman, A. I., Hayahida, M. & O'Brien, C. P. Naltrexone in the treatment of alcohol dependence. Arch. Gen. Psychiatry 49, 879–880 (1992).The first paper to report the effective use of naltrexone for the treatment of alcohol dependence; a second study reported at the same time (reference 61 ) immediately confirmed and extended the documentation of the effectiveness of naltrexone, particularly when coupled with behavioral treatment, for the treatment of alcohol dependency.

    Article  Google Scholar 

  61. O'Malley, S. S. et al. Naltrexone and coping skills therapy for alcohol dependence: a controlled study. Arch. Gen. Psychiatry 49, 881 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Mason, B. J. et al. A double-blind, placebo-controlled pilot study to evaluate the efficacy and safety of oral nalmefene HCI for alcohol dependence. Alcohol Clin. Exp. Res. 18, 1162–1167 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. O'Malley, S. S., Croop, R. S., Wroblewski, J. M., Labriola, D. F. & Volpicelli, J. R. Naltrexone in the treatment of alcohol dependence: a combined analysis of two trials. Psychiatr. Ann. 25, 681–688 (1995).

    Article  Google Scholar 

  64. Doty, P. & de Wit, H. Effects of naltrexone pretreatment on the subjective and performance effects of ethanol in social drinkers. Behav. Pharmacol. 6, 386–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Volpicelli, J. R., Rhines, K. C., Volpicelli, L. A., Alterman, A. I. & O'Brien, C. P. Naltrexone and alcohol dependence: role of subject compliance. Arch. Gen. Psychiatry 54, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Mason, B. J., Salvato, F. R., Williams, L. C., Ritvo, E. C. & Cutler, R. B. A double-blind placebo-controlled study of oral nalmefene for alcohol dependence. Arch. Gen. Psychiatry 56, 719–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. King, A. C., Batel, P. & Kreek, M. J. Recent alcoholism treatment research: ethical issues of implementation into clinical practice. Adv. Bioethics 3, 257–286 (1997).

    Google Scholar 

  68. King, A. C. et al. Hypothalamic–pituitary–adrenocortical (HPA) axis response and biotransformation of oral naltrexone: Preliminary examination of relationship to family history of alcoholism. Neuropsychopharmacol. 26, 778–788 (2002).

    Article  CAS  Google Scholar 

  69. O'Malley, S. S., Krishnan-Sarin, S., Farren, C., Sinha, R. & Kreek, M. J. Naltrexone decreases craving and alcohol self-administration in alcohol dependent subjects and activates the hypothalamo–pituitary–adrenocortical axis. Psychopharmacol. 160, 19–29 (2002).The first paper in which the mechanism of action of opioid-receptor antagonists (including naltrexone) in the successful management of some alcohol-dependent subjects is discussed. It reports that opioid-receptor antagonists not only block the rewarding effects of endogenous opioids, but also modestly activate the HPA axis, which some scientists have proposed is part of the 'reward' that is sought by alcoholics (and cocaine addicts).

    Article  CAS  Google Scholar 

  70. Bond, C. et al. Single nucleotide polymorphism in the human μ-opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction. Proc. Natl Acad. Sci. USA 95, 9608–9613 (1998).The first paper in which both differences in binding and differences in a key signal-transduction pathway are shown when ß-endorphin binds to the most common polymorphic variant of the μ-opioid receptor (caused by the A118G polymorphism). It is proposed that the presence of A118G could lead to alterations of normal physiological responses, including the stress response. In addition, this paper was the second to report the existence of this polymorphism, as well as the second most common polymorphism, C17T, and the first to report the high allelic frequency of each of these polymorphisms in diverse populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. LaForge, K. S., Yuferov, V. & Kreek, M. J. Opioid receptor and peptide gene polymorphisms: potential implications for addictions. Eur. J. Pharmacol. 410, 249–268 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. LaForge, K. S. et al. Symposium XIII: allelic polymorphisms of human opioid receptors: functional studies: genetic contributions to protection from, or vulnerability to, addictive diseases. NIDA Res. Monograph. 180, 47–50 (2000).

    Google Scholar 

  73. Wand, G. S. et al. The μ-opioid receptor gene polymorphism (A118G) alters HPA axis activation induced by opioid receptor blockade. Neuropsychopharmacol. 26, 106–114 (2002).

    Article  CAS  Google Scholar 

  74. Kampman, K. M. et al. Effectiveness of propranolol for cocaine dependence treatment may depend on cocaine withdrawal symptom severity. Drug Alcohol. Depend. 63, 69–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Major, L. F., Ballenger, J. C., Goodwin, F. K. & Brown, G. L. Cerebrospinal fluid homovanillic acid in male alcoholics: effects of disulfiram. Biol. Psychiatry 12, 635–642 (1977).

    CAS  PubMed  Google Scholar 

  76. Musacchio, J. M., Goldstein, M., Anagnoste, B., Poch, G. & Kopin, I. J. Inhibition of dopamine-heta-hydroxylase by disulfiram in vivo. J. Pharmacol. Exp. Ther. 152, 56–61 (1966).

    CAS  PubMed  Google Scholar 

  77. McCance-Katx, E. F., Kosten, T. R. & Jatlow, P. Disulfiram effects on acute cocaine administration. Drug Alcohol. Depend. 52, 27–39 (1998).

    Article  Google Scholar 

  78. George, T. P. et al. Disulfiram versus placebo for cocaine dependence in buprenorphine-maintained subjects: a preliminary trial. Biol. Psychiatry 47, 1080–1086 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Carroll, K. M. et al. One-year follow-up of disulfiram and psychotherapy for cocaine-alcohol users: sustained effects of treatment. Addiction 95, 1335–1349 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Petrakis, I. L. et al. Disulfiram treatment for cocaine dependence in methadone-maintained opioid addicts. Addiction 95, 219–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Littleton, J. Acamprosate in alcohol dependence: how does it work? Addiction 90, 1179–1188 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Verbank, P. M. The pharmacological treatment of alcoholism: from basic science to clinical medicine. Alcohol Alcohol. 30, 757–764 (1995).

    Google Scholar 

  83. Paille, F. M. et al. Double-blind randomized mulitcentre trial of acamprosate in maintaining abstinence from alcohol. Alcohol Alcohol. 30, 239–247 (1995).

    CAS  PubMed  Google Scholar 

  84. Batel, P. The treatment of alcoholism in France. Drug Alcohol Depend. 39, S15–S21 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Chick, J. Acamprosate as an aid in the treatment of alcoholism. Alcohol Alcohol. 30, 785–787 (1995).

    CAS  PubMed  Google Scholar 

  86. Whitworth, A. B. et al. Comparison of acamprosate and placebo in long-term treatment of alcohol dependence. Lancet 347, 1438–1442 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Sass, H., Soyka, M., Mann, K. & Zieglgansberger, W. Relapse prevention by acamprosate. Results from a placebo-controlled study on alcohol dependence. Arch. Gen. Pscyhiatry 53, 673–680 (1996).

    Article  CAS  Google Scholar 

  88. Comer, S. D. et al. Depot naltrexone: long-lasting antagonism of the effects of heroin in humans. Pyschopharmacol. 159, 351–360 (2002).

    Article  CAS  Google Scholar 

  89. Kling, M. A. et al. Opioid receptor imaging with PET and [18F]cyclofoxy in long-term methadone-treated former heroin addicts. J. Pharmacol. Exp. Ther. 295, 1070–1076 (2000).

    CAS  PubMed  Google Scholar 

  90. Schluger, J. H. et al. Nalmefene causes greater hypothalamic–pituitary–adrenal axis activation than naloxone in normal volunteers: implications for the treatment of alcoholism. Alcohol. Clin. Exp. Res. 22, 1430–1436 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Borg, L., Broe, D. M., Ho, A. & Kreek, M. J. Cocaine abuse sharply reduced in an effective methadone maintenance program. J. Addict. Dis. 18, 63–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Unterwald, E. M., Horne-King, J. & Kreek, M. J. Chronic cocaine alters brain μ-opioid receptors. Brain Res. 584, 314–318 (1992).The first paper in which it was unequivocally documented that chronic binge-pattern cocaine significantly alters the endogenous opioid system of the brain, including, in this case, enhancement of μ-opioid-receptor density in brain regions that have abundant dopaminergic terminals from the nigrostriatal system, as well as the mesolimbic–mesocortical dopaminergic system. This finding was later replicated in human imaging studies with increased μ-opioid-receptor binding in chronic cocaine-dependent men (reference 93).

    Article  CAS  PubMed  Google Scholar 

  93. Zubieta, J. K. et al. Increased μ-opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nature Med. 2, 1225–1229 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Azaryan, A. V., Clock, B. J. & Cox, B. M. Transient upregulation of μ-opioid receptor mRNA in nucleus accumbens during chronic cocaine administration. FASEB J. 10, A448 (1996).

    Google Scholar 

  95. Yuferov, V. et al. Acute 'binge' cocaine increases μ-opioid receptor mRNA levels in areas of the rat mesolimbic mesocortical dopamine system. Brain Res. Bull. 48, 109–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Kreek, M. J. et al. Circadian rhythms and levels of β-endorphin, ACTH, and cortisol during chronic methadone maintenance treatment in humans. Life Sci. 33, 409–411 (1983).

    Article  CAS  PubMed  Google Scholar 

  97. Kreek, M. J. et al. ACTH, cortisol and β-endorphin response to metyrapone testing during chronic methadone maintenance treatment in humans. Neuropeptides 5, 277–278 (1984).

    Article  CAS  PubMed  Google Scholar 

  98. Schluger, J., Bodner, G., Gunduz, M., Ho, A. & Kreek, M. J. in Problems of Drug Dependence, 1997; Proceedings of the 59th Annual Scientific Meeting of the College on Problems of Drug Dependence. National Institute of Drug Abuse Research Monograph Series (ed. Harris, L. S.) DHHS Pub. No. ADM 98-4305, 178:105 (US Govt Print. Off., Washington DC, 1998).

    Google Scholar 

  99. Schluger, J. H., Borg, L., Ho, A. & Kreek, M. J. Altered HPA axis responsivity to metyrapone testing in methadone maintained former heroin addicts with ongoing cocaine addiction. Neuropsychopharmacol. 24, 568–575 (2001).The first paper in which unequivocal 'relative endorphin deficiency' was documented with atypical stress responsivity after challenge with metyrapone, which shuts off the normal tonic inhibition by cortisol of the stress-responsive HPA axis, leaving the endogenous opioids to carry out their role in inhibition. Earlier findings of the normalization of stress responsivity in long-term, methadone-maintained former heroin addicts are also confirmed.

    Article  CAS  Google Scholar 

  100. Kreek, M. J. Opiate and cocaine addictions: challenge for pharmacotherapies. Pharm. Biochem. Behav. 57, 551–569 (1997).

    Article  CAS  Google Scholar 

  101. Kreek, M. J. in Proc. Fourth National Conference on Methadone Treatment. National Association for the Prevention of Addiction to Narcotics (NAPAN)-NIMH 171–174 (1972).

    Google Scholar 

  102. Kreek, M. J. Medical complications in methadone patients. Ann. NY Acad. Sci. 311, 110–134 (1978).

    Article  CAS  PubMed  Google Scholar 

  103. Zhou, Y. et al. Hypothalamic–pituitary–adrenal activity and POMC mRNA levels in the hypothalamus and pituitary of the rat are differentially modulated by acute intermittent morphine with or without water restriction stress. J. Endocrinol. 154, 261–267 (1999).

    Article  Google Scholar 

  104. Zhou, Y. et al. Corticotropin-releasing factor and CRF-R1 mRNAs in rat brain and pituitary during 'binge' pattern cocaine administration and chronic withdrawal. J. Pharmacol. Exp. Ther. 279, 351–358 (1996).

    CAS  PubMed  Google Scholar 

  105. Zhou, Y. et al. Reduced hypothalamic POMC and anterior pituitary CRF1 receptor mRNA levels after acute, but not chronic, daily 'binge' intragastric alcohol administration. Alcohol. Clin. Exp. Res. 24, 1575–1582 (2000).

    CAS  PubMed  Google Scholar 

  106. Zhou, Y. et al. Steady-state methadone in rats does not change mRNA levels of corticotropin-releasing factor, its pituitary receptor or proopiomelanocortin. Eur. J. Pharmacol. 315, 31–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Spangler, R., Zhou, Y., Schlussman, S. D., Ho, A. & Kreek, M. J. Behavioral stereotypies induced by 'binge' cocaine administration are independent of drug-induced increases in corticosterone levels. Behav. Brain Res. 86, 201–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Zhou, Y. et al. Effects of chronic 'binge' cocaine administration on plasma ACTH and corticosterone levels in mice deficient in DARPP-32. Neuroendocrinology 70, 196–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Zhou, Y., Spangler, R., Ho, A. & Kreek, M. J. Hypothalamic CRH mRNA levels are differentially modulated by repeated 'binge' cocaine with or without D1 dopamine receptor blockade. Mol. Brain Res. 94, 112–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Mendelson, J. H. et al. Cocaine tolerance: behavioral, cardiovascular, and neuroendocrine function in men. Neuropharmacol. 18, 263–271 (1998).

    CAS  Google Scholar 

  111. Kennedy, J. A., Hartman, N., Sbriglio, R., Khuri, E. & Kreek, M. J. Metyrapone-induced withdrawal symptoms. Br. J. Addict. 85, 1133–1140 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Culpepper-Morgan, J. A. et al. Treatment of opioid induced constipation with oral naloxone: a pilot study. Clin. Pharm. Ther. 23, 90–95 (1992).

    Article  Google Scholar 

  113. Culpepper-Morgan, J. A. & Kreek, M. J. HPA axis hypersensitivity to naloxone in opioid dependence: a case of naloxone induced withdrawal. Metabolism 46, 130–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Rosen, M. I. et al. Reliability of sequential naloxone challenge tests. Am. J. Drug Alcohol Abuse 214, 453–467 (1995).

    Article  Google Scholar 

  115. Volavka, J. et al. Naloxone increases ACTH and cortisol in man. N. Engl. J. Med. 300, 1056–1057 (1979).

    CAS  PubMed  Google Scholar 

  116. Cohen, M. R., Cohen, R. M., Pickar, D., Weingartner, H. & Murphy, D. L. High-dose naloxone infusions in normals. Dose-dependent behavioral, hormonal, and physiological responses. Arch. Gen. Psychiat. 40, 613–619 (1983).

    Article  CAS  PubMed  Google Scholar 

  117. Kreek, M. J., Schneider, B. S., Raghunath, J. & Plevy, S. in Abstracts of the Seventh International Congress of Endocrinology, Excerpta Medica. Int. Congress Series 652 848 (Oxford–Princeton, Amsterdam, 1984).

    Google Scholar 

  118. Kosten, T. R., Kreek, M. J., Raghunath, J. & Kleber, H. D. Cortisol levels during chronic naltrexone maintenance treatment in ex-opiate addicts. Biol. Psychiatry 21, 217–220 (1986).

    Article  CAS  PubMed  Google Scholar 

  119. Kosten, T. R., Kreek, M. J., Raghunath, J. & Kleber, H. D. A preliminary study of β-endorphin during chronic naltrexone maintenance treatment in ex-opiate addicts. Life Sci. 39, 55–59 (1986).

    Article  CAS  PubMed  Google Scholar 

  120. Kosten, T. R., Morgan, C. & Kreek, M. J. β-Endorphin levels during heroin, methadone, buprenorphine and naloxone challenges: preliminary findings. Biol. Psychiatry 32, 523–528 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Sillaber, I. et al. Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CHR1 receptors. Science 296, 931–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Spanagel, R., Herz, A. & Shippenberg, T. S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl Acad. Sci. USA 89, 2046–2050 (1992).The second study to clearly show the opposing role of active endogenous opioid systems in modulating the mesolimbic dopaminergic pathway (see also reference 154 ), and to show that these opposing systems are tonically active.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Metzger, R. R., Hanson, G. R., Gibb, J. W. & Fleckenstein, A. E. 3-4-Methylenedioxymethamphetamine-induced acute changes in dopamine transporter function. Eur. J. Pharmacol. 349, 205–210 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Bozarth, M. A. & Wise, R. A. Neural substrates of opiate reinforcement. Prog. Neuropsychopharmacol. Biol. Psychiatry 7, 569–575 (1983).One of the earliest papers to describe the main role of dopamine, as well as numerous other neurotransmitter systems, as the neural substrate of cocaine reinforcement. This was subsequently built on in studies by many groups of the apparently central role of dopaminergic function in the reinforcing properties and other effects of cocaine and other stimulants.

    Article  CAS  PubMed  Google Scholar 

  126. Rassnick, S., Pulvirenti, L. & Koob, G. F. Oral ethanol self-administration in rats is reduced by the administration of dopamine and glutamate receptor antagonists into the nucleus accumbens. Psychopharmacol. (Berl.) 109, 92–98 (1992).

    Article  CAS  Google Scholar 

  127. Negus, S. S., Mello, N. K., Lamas, X. & Mendelson, J. H. Acute and chronic effects of flupenthixol on the discriminative stimulus and reinforcing effects of cocaine in rhesus monkeys. J. Pharmacol. Exp. Ther. 278, 879–890 (1996).

    CAS  PubMed  Google Scholar 

  128. Sherer, M. A., Kumor, K. M. & Jaffe, J. H. Effects of intravenous cocaine are partially attenuated by haloperidol. Psychiatry Res. 27, 117–125 (1989).

    Article  CAS  PubMed  Google Scholar 

  129. Ohuoha, D. C., Maxwell, J. A., Thomson, L. E., Cadet, J. L. & Rothman, R. B. Effect of dopamine receptor antagonists on cocaine subjective effects: a naturalistic case study. J. Subst. Abuse Treat. 14, 249–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Evans, S. M. et al. Effect of flupenthixol on subjective and cardiovascular responses to intravenous cocaine in humans. Drug Alcohol Depend. 64, 271–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Haney, M., Ward, A. S., Foltin, R. W. & Fischman, M. W. Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans. Psychopharmacol. (Berl.) 155, 330–337 (2001).

    Article  CAS  Google Scholar 

  132. Pilla, M. et al. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400, 371–375 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Platt, D. M., Rowlett, J. K. & Spealman, R. D. Modulation of cocaine and food self-administration by low- and high-efficacy D1 agonists in squirrel monkeys. Psychopharmacol. (Berl.) 157, 208–216 (2001).

    Article  CAS  Google Scholar 

  134. Mutschler, N. H. & Bergman, J. Effects of chronic administration of the D(1) receptor partial agonist SKF 77434 on cocaine self-administration in rhesus monkeys. Psychopharmacol. (Berl.) 160, 362–370 (2002).

    Article  CAS  Google Scholar 

  135. Caine, S. B., Negus, S. S., Mello, N. K. & Bergman, J. Effects of dopamine D(1-like) and D(2-like) agonists in rats that self-administer cocaine. J. Pharmacol. Exp. Ther. 291, 353–360 (1999).

    CAS  PubMed  Google Scholar 

  136. Ranaldi, R., Wang, Z. & Woolverton, W. L. Reinforcing effects of D2 dopamine receptor agonists and partial agonists in rhesus monkeys. Drug Alcohol Depend. 64, 209–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Sinnott, R. S., Mach, R. H. & Nader, M. A. Dopamine D2/D3 receptors modulate cocaine's reinforcing and discriminative stimulus effects in rhesus monkeys. Drug Alcohol Depend. 54, 97–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Malcolm, R., Hutto, B. R., Phillips, J. D. & Ballenger, J. C. Pergolide mesylate treatment of cocaine withdrawal. J. Clin. Psychiatry 52, 39–40 (1991).

    CAS  PubMed  Google Scholar 

  139. Eiler, K., Schaefer, M. R., Salstrom, D. & Lowery, R. Double-blind comparison of bromocriptine and placebo in cocaine withdrawal. Am. J. Drug Alcohol Abuse 21, 65–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  140. Levin, F. R. et al. Pergolide mesylate for cocaine abuse: a controlled preliminary trial. Am. J. Addict. 8, 120–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Haney, M., Collins, E. D., Ward, A. S., Foltin, R. W. & Fischman, M. W. Effect of a selective dopamine D1 agonist (ABT-431) on smoked cocaine self-administration in humans. Psychopharmacol. (Berl.) 143, 102–110 (1999).

    Article  CAS  Google Scholar 

  142. Ritz, M. C., Cone, E. J. & Kuhar, M. J. Cocaine inhibition of ligand binding at dopamine, noradrenaline and serotonin transporters: a structure-activity study. Life Sci. 46, 635–648 (1990).A key paper that builds on the much earlier initial findings of Ritz and Kuhar of the relationship between dopaminergic function and the self-administration between cocaine. This seminal report focused on one of the earliest serious considerations of function and relative structure–activity of ligand binding at dopamine, noradrenaline and serotonin receptors with respect to the inhibition of cocaine effects.

    Article  CAS  PubMed  Google Scholar 

  143. Kolar, A. F. et al. Treatment of cocaine dependence in methadone maintenance clients: a pilot study comparing the efficacy of desipramine and amantadine. Int. J. Addict. 27, 849–868 (1992).

    Article  CAS  PubMed  Google Scholar 

  144. Arndt, I. O., Dorozynsky, L., Woody, G. E., McLellan, A. T. & O'Brien, C. P. Desipramine treatment of cocaine dependence in methadone-maintained patients. Arch. Gen. Psychiatry 49, 888–893 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Walsh, S. L., Preston, K. L., Sullivan, J. T., Fromme, R. & Bigelow, G. E. Fluoxetine alters the effects of intravenous cocaine in humans. J Clin. Psychopharmacol. 14, 396–407 (1994).

    CAS  PubMed  Google Scholar 

  146. Margolin, A. et al. A multicenter trial of bupropion for cocaine dependence in methadone-maintained patients. Drug Alcohol Depend. 40, 125–131 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Nunes, E. V. et al. Imipramine treatment of cocaine abuse: possible boundaries of efficacy. Drug Alcohol Depend. 39, 185–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  148. Levin, F. R., Evans, S. M., McDowell, D. M. & Kleber, H. D. Methylphenidate treatment for cocaine abusers with adult attention-deficit/hyperactivity disorder: a pilot study. J. Clin. Psychiatry 59, 300–305 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Roache, J. D., Grabowski, J., Schmitz, J. M., Creson, D. L. & Rhoades, H. M. Laboratory measures of methylphenidate effects in cocaine-dependent patients receiving treatment. J. Clin. Psychopharmacol. 20, 61–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Villemagne, V. L. et al. Doses of GBR12909 that suppress cocaine self-administration in non-human primates substantially occupy dopamine transporters as measured by [11C] WIN35,428 PET scans. Synapse 32, 44–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Ranaldi, R., Anderson, K. G., Carroll, F. I. & Woolverton, W. L. Reinforcing and discriminative stimulus effects of RTI 111, a 3-phenyltropane analog, in rhesus monkeys: interaction with methamphetamine. Psychopharmacol. (Berl.) 153, 103–110 (2000).

    Article  CAS  Google Scholar 

  152. Cook, C. D., Carroll, F. I. & Beardsley, P. M. RTI 113, a 3-phenyltropane analog, produces long-lasting cocaine-like discriminative stimulus effects in rats and squirrel monkeys. Eur. J. Pharmacol. 442, 93–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Wilcox, K. M. et al. Self-administration of cocaine and the cocaine analog RTI-113: relationship to dopamine transporter occupancy determined by PET neuroimaging in rhesus monkeys. Synapse 43, 78–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Di Chiara, G. & Imperato, A. Opposite effects of μ and κ-opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J. Pharmacol. Exp. Ther. 244, 1067–1080 (1988).One of two early papers published by these authors that first showed that most drugs abused by humans increase synaptic-dopamine concentration in the mesolimbic system of freely moving rats (see also reference 122 ). This is also the first study that showed the opposite effect of μ-opioid- and κ-opioid-receptor agonists in modulating dopamine release — concepts that have been substantiated by many groups and that are central to some of the potential targets for drug discovery that are discussed here.

    CAS  PubMed  Google Scholar 

  155. Spanagel, R., Herz, A. & Shippenberg, T. S. The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J. Neurochem. 55, 1734–1740 (1990).

    Article  CAS  PubMed  Google Scholar 

  156. Maisonneuve, I. M., Archer, S. & Glick, S. D. U50,488, a κ-opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats. Neurosci. Lett. 181, 57–60 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Bals-Kubik, R., Ableitner, A., Herz, A. & Shippenberg, T. S. Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J. Pharmacol. Exp. Ther. 264, 489–495 (1993).

    CAS  PubMed  Google Scholar 

  158. Glick, S. D., Maisonneuve, I. M., Raucci, J. & Archer, S. κ-Opioid inhibition of morphine and cocaine self-administration in rats. Brain Res. 681, 147–152 (1995).

    Article  CAS  PubMed  Google Scholar 

  159. Emmerson, P. J., Liu, M. R., Woods, J. H. & Medzihradsky, F. Binding affinity and selectivity of opioids at μ, δ and κ receptors in monkey brain membranes. J. Pharmacol. Exp. Ther. 271, 1540–1547 (1994).

    Google Scholar 

  160. Raynor, K. et al. Pharmacological characterization of the cloned κ-, δ-, and μ-opioid receptors. Mol. Pharmacol. 48, 330–334 (1994).

    Google Scholar 

  161. France, C. P. & Gerak, L. R. Behavioral effects of 6-methylene naltrexone (nalmefene) in rhesus monkeys. J. Pharmacol. Exp. Ther. 270, 992–999 (1994).

    CAS  PubMed  Google Scholar 

  162. Ko, M. C., Butelman, E. R., Traynor, J. R. & Woods, J. H. Differentiation of κ-opioid agonist-induced antinociception by naltrexone apparent pA2 analysis in rhesus monkeys. J. Pharmacol. Exp. Ther. 285, 518–526 (1998).

    CAS  PubMed  Google Scholar 

  163. Negus, S. S., Mello, N. K., Portoghese, P. S. & Lin, C. E. Effects of κ opioids on cocaine self-administration by rhesus monkeys. J. Pharmacol. Exp. Ther. 282, 44–55 (1997).

    CAS  PubMed  Google Scholar 

  164. Kuzmin, A. V., Gerrits, M. A. & van Ree, J. M. κ-Opioid receptor blockade with nor-binaltorphimine modulates cocaine self-administration in drug-naive rats. Eur. J. Pharmacol. 358, 197–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Portoghese, P. S., Nagase, H., Lipkowski, A. W., Larson, D. L. & Takemori, A. E. Binaltorphimine-related bivalent ligands and their κ-opioid receptor antagonist selectivity. J. Med. Chem. 31, 836–841 (1988).

    Article  CAS  PubMed  Google Scholar 

  166. Negus, S. S., Mello, N. K., Linsenmayer, D. C., Jones, R. C. & Portoghese, P. S. κ-Antagonist effcts of the novel κ-antagonist 5′–guanidinonaltrindole (GNTI) in an assay of schedule controlled behavior. Psychopharmacol. (in the press).

  167. Butelman, E. R., Negus, S. S., Ai, Y., de Costa, B. R. & Woods, J. H. κ-Opioid antagonist effects of systemically administered nor-binaltorphimine in a thermal antinociception assay in rhesus monkeys. J. Pharmacol. Exp. Ther. 267, 1269–1276 (1993).

    CAS  PubMed  Google Scholar 

  168. Broadbear, J. H., Negus, S. S., Butelman, E. R., de Costa, B. R. & Woods, J. H. Differential effects of systemically administered nor-binaltorphimine (nor-BNI) on κ-opioid agonists in the mouse writhing assay. Psychopharmacol. (Berl.) 115, 311–319 (1994).

    Article  CAS  Google Scholar 

  169. Neumeyer, J. L. et al. Mixed κ agonists and μ agonists/antagonists as potential pharmacotherapeutics for cocaine abuse: synthesis and opioid receptor binding affinity of N-substituted derivatives of morphinan. Bioorg. Med. Chem. Lett. 11, 2735–2740 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Toll, L. et al. Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res. Monog. 178, 440–466 (1997).

    CAS  Google Scholar 

  171. France, C. P., Medzihradsky, F. & Woods, J. H. Comparison of κ opioids in rhesus monkeys: behavioral effects and receptor binding affinities. J. Pharmacol. Exp. Ther. 268, 47–58 (1994).

    CAS  PubMed  Google Scholar 

  172. Dykstra, L. A. Butorphanol, levallorphan, nalbuphine and nalorphine as antagonists in the squirrel monkey. J. Pharmacol. Exp. Ther. 254, 248–252 (1990).

    Google Scholar 

  173. Archer, S., Glick, S. D. & Bidlack, J. M. Cyclazocine revisited. Neurochem. Res. 21, 1369–1373 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. Glick, S. D., Visker, K. E. & Maisonneuve, I. M. Effects of cyclazocine on cocaine self-administration in rats. Eur. J. Pharmacol. 357, 9–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  175. Gear, R. W. et al. The κ opioid nalbuphine produces gender- and dose-dependent analgesia and antianalgesia in patients with postoperative pain. Pain 83, 339–348 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Walsh, S. L., Geter-Douglas, B., Strain, E. C. & Bigelow, G. E. Enadoline and butorphanol: evaluation of κ-agonists on cocaine pharmacodynamics and cocaine self-administration in humans. J. Pharmacol. Exp. Ther. 299, 147–158 (2001).

    CAS  PubMed  Google Scholar 

  177. Remmers, A. E. et al. Opioid efficacy in a C6 glioma cell line stably expressing the human κ opioid receptor. J. Pharmacol. Exp. Ther. 288, 827–833 (1999).

    CAS  PubMed  Google Scholar 

  178. Vivian, J. A. et al. κ-Opioid receptor effects of butorphanol in rhesus monkeys. J. Pharmacol. Exp. Ther. 290, 259–265 (1999).

    CAS  PubMed  Google Scholar 

  179. Heidbreder, C. A., Goldberg, S. R. & Shippenberg, T. S. The κ-opioid receptor agonist U-69593 attenuates cocaine-induced behavioral sensitization in the rat. Brain Res. 616, 335–338 (1993).

    Article  CAS  PubMed  Google Scholar 

  180. Shippenberg, T. S., LeFevour, A. & Heidbreder, C. κ-Opioid receptor agonists prevent sensitization to the conditioned rewarding effects of cocaine. J. Pharmacol. Exp. Ther. 276, 548–554 (1996).

    Google Scholar 

  181. Mello, N. K. & Negus, S. S. Effects of κ-opioid agonists on cocaine- and food-maintained responding by rhesus monkeys. J. Pharmacol. Exp. Ther. 286, 812–824 (1998).

    CAS  PubMed  Google Scholar 

  182. Dykstra, L. A., Gmerek, D. E., Winger, G. & Woods, J. H. κ-Opioids in rhesus monkeys. I. Diuresis, sedation, analgesia and discriminative stimulus effects. J. Pharmacol. Exp. Ther. 242, 413–420 (1987).

    CAS  PubMed  Google Scholar 

  183. Pfeiffer, A., Brantl, V., Herz, A. & Emrich, H. M. Psychotomimesis mediated by κ opiate receptors. Science 233, 774–776 (1986).

    Article  CAS  PubMed  Google Scholar 

  184. Ur, E., Wright, D. M., Bouloux, P. M. & Grossman, A. The effects of spiradoline (U-62066E), a κ-opioid receptor agonist, on neuroendocrine function in man. Br. J. Pharmacol. 120, 781–784 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gmerek, D. E., Dykstra, L. A. & Woods, J. H. κ-Opioids in rhesus monkeys. III. Dependence associated with chronic administration. J. Pharmacol. Exp. Ther. 242, 428–436 (1987).

    CAS  PubMed  Google Scholar 

  186. Kreek, M. J., Schluger, J., Borg, L., Gunduz, M. & Ho, A. Dynorphin A1-13 causes elevation of serum levels of prolactin through an opioid receptor mechanism in humans: gender differences and implications for modulations of dopaminergic tone in the treatment of addictions. J. Pharmacol. Exp. Ther. 288, 260–269 (1999).

    CAS  PubMed  Google Scholar 

  187. King, A. C., Ho, A., Schluger, J., Borg, L. & Kreek, M. J. Acute subjective effects of dynorphin A(1-13) infusion in normal healthy subjects. Drug Alcohol Depend. 54, 87–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Nakazawa, T. et al. Analgesia produced by E-2078, a systemically active dynorphin analog, in mice. J. Pharmacol. Exp. Ther. 252, 1247–1254 (1990).

    CAS  PubMed  Google Scholar 

  189. Yu, J., Butelman, E. R., Woods, J. H., Chait, B. T. & Kreek, M. J. Dynorphin A (1-8) analog, E-2078, is stable in human and rhesus monkey blood. J. Pharmacol. Exp. Ther. 280, 1147–1151 (1997).

    CAS  PubMed  Google Scholar 

  190. Butelman, E. R., Harris, T. J. & Kreek, M. J. Effects of E-2078, a stable dynorphin A(1–8) analog, on sedation and serum prolactin levels in rhesus monkeys. Psychopharmacol. (Berl.) 147, 73–80 (1999).The first paper to report directly the dopamine-lowering effects of a synthetic dynorphin-peptide analogue when administered to a non-human primate. This compound, which has been safely used in humans for analgesic purposes, but never completely developed for human use, is a prototype of a potential medication that might be effective for some aspects of cocaine and other stimulant dependency.

    Article  CAS  Google Scholar 

  191. Ohnishi, A. et al. Aquaretic effect of the stable dynorphin-A analog E2078 in the human. J. Pharmacol. Exp. Ther. 270, 342–347 (1994).

    CAS  PubMed  Google Scholar 

  192. Bergen, A. W., et al. μ-Opioid receptor gene variants: lack of association with alcohol dependence. Mol. Psychiatry 2, 490–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  193. Szeto, C. Y., Tang, N. L., Lee, D. T. & Stadlin, A. Association between μ-opioid receptor gene polymorphisms and Chinese heroin addicts. Neuroreport 12, 1103–1106 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Mark, T. L., Woody, G. E., Juday, T. & Kleber, H. D. The economic costs of heroin addiction in the United States. Drug Alcohol Depend. 61, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Lavoie for his invaluable help in the preparation of the manuscript, F. Vocci (National Institutes of Health (NIH) National Institute on Drug Abuse) for providing the medication-development information for table 3 and G. Bart, K. Bell, E. Ducat and J. Andersen for further annotation of sites of action and trade names. Funding support was received from the National Institutes of Health (NIH) National Institute on Drug Abuse and the NIH National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jeanne Kreek.

Supplementary information

Related links

Related links

DATABASES

LocusLink

ACE

ALDH2

COX-2

CRF

D1 receptor

D2 receptor

D3 receptor

DARRP32

dopamine β-hydroxylase

β-endorphin

enkephalin

GABAA receptor

GABAB receptor

11β-hydroxylase

17α-hydroxylase

luteinizing hormone

MAO

δ-opioid receptor

κ-opioid receptor

μ-opioid receptor

prolactin

Medscape DrugInfo

amantadine

amlodipine

d-amphetamine

baclofen

buprenorphine

bupropion

butorphanol

cabergoline

captopril

carnitine

celecoxib

clonidine

coenzyme Q

desipramine

dexamethasone

dextromethorphan

disulfiram

donepezil hydrochloride

fluoxetine

gabapentin

haloperidol

hydergine

hypericum

imipramine

isradipine

ketoconazole

labetalol

lamotrigine

Levo-Dopa

mecamylamine

methadone

methylphenidate

metyrapone

modafinil

morphine

nalbuphine

nalmefene

naloxone

naltrexone

nefazodone

oxazepam

paroxetine

pemoline

pentoxifylline

pergolide

pramipexole

propanolol

reserpine

riluzole

risperidone

selegiline

sertraline

sibutramine

taurine

tiagabine

tolcapone

tryptophan

valproate

venlafaxine

OMIM

Parkinson's disease

FURTHER INFORMATION

American College of Neuropsychopharmacology

Encyclopedia of Life Sciences

addiction

FDA

National Institute on Drug Abuse

Glossary

ADDICTION

Addictions have been defined by various scientific, national and international policy, and clinical groups. The most commonly used diagnostic criteria in the United States are those given by the Diagnostic and Statistical Manual IV (DSM-IV) for drug (or alcohol) abuse or drug (or alcohol) dependence.

POSITIVE REINFORCEMENT

Positive reinforcers (rewards) increase the frequency of behaviour that leads to their acquisition. Negative reinforcers (punishers) decrease the frequency of behaviour that leads to their encounter and increase the frequency of behaviour that leads to their avoidance, or alternatively might lead to an increase in the frequency of behaviour to offset the negative effects — for example, re-administration of an opiate to reverse or attenuate opiate-withdrawal signs and symptoms.

TOLERANCE

A progressive, reduced drug responsiveness with repeated exposure to a constant drug dose, therefore requiring an increase in dose to achieve the desired response.

SENSITIZATION

Enhanced drug responsiveness with repeated exposure to a constant drug dose; alternatively, a greater response on re-challenge with a lower dose of drug than used in the initial chronic-intermittent exposure.

DEPENDENCE

An altered physiological state that develops to compensate for persistent drug exposure, which could give rise to a withdrawal syndrome after drug use is stopped; also used by many to refer to psychological dependence that leads to compulsive drug use.

WITHDRAWAL

A collection of physiological signs and symptoms that appear after the sudden cessation of drug intake, which can include shaking, sweating and anxiety, depending on the drug.

MESOLIMBIC–MESOCORTICAL DOPAMINERGIC SYSTEM

This system is part of the motivational system that regulates responses to natural reinforcers, such as food, drink, social interaction and sex.

CONDITIONED PLACE PREFERENCE

The development in an experimental animal of a preference for a location that is repeatedly paired with a rewarding stimulus (for example, cocaine).

CUE-INDUCED RELAPSE

Relapse to drug taking ('reinstatement' in animal self-administration models) after a period of cessation can be induced by a drug-associated cue or specific environmental stimulus, such as a light or sound, which is not directly related to drug taking. Such a cue can elicit a neural response that leads to drug seeking or taking behaviours.

PRIMING

Re-administration of even a modest amount of the drug of abuse after chronic use, and then achievement of an abstinent state.

CROSS-TOLERANCE

The development of tolerance to the effects of a second drug, which results from the development of tolerance to a first drug after extended exposure to the first drug. For example, chronic treatment with methadone produces cross-tolerance to heroin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreek, M., LaForge, K. & Butelman, E. Pharmacotherapy of addictions. Nat Rev Drug Discov 1, 710–726 (2002). https://doi.org/10.1038/nrd897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing