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Recent neuroanatomical and functional investigations focusing on dopamine (DA) D3 receptors have suggested a potential role of this

receptor in psychiatric diseases such as schizophrenia and drug dependence. In line with the key role of the prefrontal cortex in

psychiatric disorders, the present study aimed at assessing the effects of the acute systemic administration of the selective DA D3

receptor antagonist SB-277011-A on the in vivo extracellular levels of monoamines (DA, norepinephrine (NE), and serotonin (5-HT))

and acetylcholine (ACh) in the anterior cingulate subregion of the medial prefrontal cortex. The in vivo neurochemical profile of SB-

277011-A (10mg/kg, i.p.) in the anterior cingulate cortex was compared with both typical and atypical antipsychotics including clozapine

(10mg/kg, s.c.), olanzapine (10mg/kg, s.c.), sulpiride (10mg/kg, s.c.), and haloperidol (0.5mg/kg, s.c.). The acute administration of SB-

277011-A, clozapine, and olanzapine produced a significant increase in extracellular levels of DA, NE, and ACh without affecting levels of

5-HT. Sulpiride also significantly increased extracellular DA, but with a delayed onset over SB-277011-A, clozapine, and olanzapine. In

contrast, haloperidol failed to alter any of the three monoamines and ACh in the anterior cingulate cortex. These findings add to a

growing body of evidence suggesting a differentiation between typical and atypical antipsychotic drugs (APDs) in the anterior cingulate

cortex and a role of DA D3 receptors in desired antipsychotic drug profile. Similar to their effects on DA and NE, SB-277011-A,

clozapine, and olanzapine increased extracellular levels of ACh, whereas haloperidol and sulpiride did not alter ACh. The results obtained

in the present study provide evidence of the important role of DA D3 receptors in the effect of pharmacotherapeutic agents that are

used for the treatment of psychiatric disorders such as schizophrenia and drug dependence.

Neuropsychopharmacology (2003) 28, 839–849, advance online publication, 12 March 2003; doi:10.1038/sj.npp.1300114

Keywords: acetylcholine; antipsychotic drug; D3-receptors; dopamine; norepinephrine; SB-277011-A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

INTRODUCTION

The efficacy of conventional typical antipsychotic drugs
(APDs) such as haloperidol is limited mostly by their
property to induce tardive dyskinesia and extrapyramidal
side effects in addition to their therapeutic effects. In fact,
the efficacy of neuroleptic agents has been associated with
antagonism at dopamine (DA) D2 receptors in mesolimbic
and mesocortical brain areas, whereas extrapyramidal side
effects have been related to antagonism at D2 receptors in
the dorsal striatum (Carlsson, 1978; Meltzer and Stahl, 1976;
Seeman et al, 1976). The identification of novel D2-like

receptor subtypes, that is D3 or D4, has provided new tools
to assess the mechanisms of action of APDs (for a review see
Neve and Neve, 1997; Sokoloff and Schwartz, 1995) and
develop new compounds that retain neuroleptic properties
with reduced side effects. Atypical vs typical APDs can be
differentiated by their effects on behavior in schizophrenic
patients. While typical and atypical APDs are both effective
in treating the positive symptoms of schizophrenia, atypical
APDs show considerably greater efficacy in alleviating the
negative symptoms (Kinon and Lieberman, 1996; Meltzer,
1996). Furthermore, atypical APDs produce less extrapyr-
amidal motor side effects than typical APDs (Arnt and
Skarsfeldt, 1998; Bunney, 1992; Casey, 1997). The etiology of
negative symptoms and cognitive dysfunction of schizo-
phrenia have been associated with dopaminergic hypofunc-
tion in the medial prefrontal cortex (mPFC) (Davis et al,
1991; Goldman-Rakic and Selemon, 1997; Weinberger and
Lipska, 1995). It has been proposed that a correlation exists
between the increase in extracellular DA in the mPFC vs
striatum and the efficacy vs side effect profile of APDs
(Kuroki et al, 1999; Moghaddam and Bunney, 1990;
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Nomikos et al, 1994; Pehek and Yamamoto, 1994; Volonte et
al, 1997).
Recently, investigations focusing on DA D3 receptors have

suggested a potential role of this receptor in psychiatric
disorders. This association was originally suggested from
the following observations: (1) Contrary to DA D1 and D2

receptors, DA D3 receptors are expressed preferentially in
granule cells of the islands of Calleja and in medium-sized
spiny neurons of the rostral and ventromedial shell of the
nucleus accumbens, regions in which the D2 receptors are
scarcely expressed (Gurevich and Joyce, 1999; Landwehr-
meyer et al, 1993; Murray et al, 1994; Sokoloff et al, 1990);
(2) DA D3 receptors have been functionally associated with
cognitive and emotional behavior, in line with a possible
role of this receptor in the negative symptoms of schizo-
phrenia (Gurevich and Joyce, 1999; Herroelen et al, 1994;
Suzuki et al, 1998); (3) the density of DA D3 receptors is
elevated in the brains of cocaine overdose fatalities (Staley
and Mash, 1996); (4) D3 receptors are overexpressed in the
ventral striatum of drug-free schizophrenic patients (Gur-
evich et al, 1997), and (5) in contrast with haloperidol, the
majority of clozapine-induced Fos-like immunoreactive
neurons in the major island of Calleja, nucleus accumbens,
and lateral septal nucleus express DA D3 receptor mRNA
(Guo et al, 1998). Thus, there is increased evidence to support
the role of DA D3 receptors in the pathophysiology of
schizophrenia. As a result, new DA D3 receptor antagonists
with improved selectivity at D3 over D2 receptors have been
developed, such as (+)-UH-232, (+)-A-J-76, U-991994, and l-
nafadotride. However, their selectivity for D3 over D2

receptors is only 10- to 20-fold. In contrast, the DA D3

receptor antagonist SB-277011-A (trans-N-[4-[2-(6-cyano-
1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quino-
lininecarboxamide) shows high affinity and 100-fold selectiv-
ity for D3 over D2 receptors and 66 other receptors, enzymes,
and ion channels (Reavill et al, 2000).
Accordingly, the present study aimed at assessing the

effects of the acute systemic administration of the selective
DA D3 receptor antagonist, SB-277011-A, on the in vivo
levels of monoamines and acetylcholine (ACh) in the
anterior cingulate subregion of the mPFC. The in vivo
neurochemical profile of SB-277011-A in the anterior
cingulate cortex was compared against other classical APDs,
including haloperidol, as a prototype typical, and clozapine,
as a prototype atypical. In addition, SB-277011-A was
compared with another atypical APD, olanzapine as well as
the benzamide sulpiride. Benzamides such as sulpiride,
amisulpiride, and remoxipride are considered as effective
APD compounds that induce relatively few extrapyramidal
side effects (Lewander, 1994; Peuskens et al, 1999).
According to clinical and behavioral data, only little
evidence distinguishes benzamides from the atypical APD
compounds such as olanzapine, risperidone, or ziprasidone.
Moreover, animal data suggest that benzamides can be
classified as atypical APDs (Arnt and Skarsfeldt, 1998).

MATERIALS AND METHODS

Subjects

Male Sprague–Dawley rats (Charles River, UK Ltd) weighing
250–300 g were housed in groups of six per cage in a

temperature- and humidity-controlled environment with
free access to food (restricted to 20 g/day after surgery) and
water. Rats were kept on a 12 h light : dark cycle with lights
on at 0700 h. All experimental procedures carried out in the
present study were within the guidelines of the Animals
(Scientific Procedures) Act 1986.

Surgical Procedures

The animals were anaesthetized using a mixture of
medetomidines (0.04ml/100 g, s.c.) and fentanyls (0.9ml/
kg, i.p.). Once deep anaesthesia was obtained, rats were
transferred to a stereotaxic frame (David Kopf, Tujunga,
CA) with the upper incisor bar set at �3.2mm below the
interaural line. Rats were placed on a homeothermic blanket
set at 371C throughout the surgery. An incision was made
into the scalp to reveal bregma, and holes were then drilled
for four anchor screws, and another for unilateral place-
ment of an intracerebral cannula guide (CMA 11, Biotech,
UK) into the anterior cingulate subregion of the mPFC. The
coordinates with respect to bregma were: +2.7mm anterior
(A) to bregma; 0.5mm lateral (L) to the midsagittal sinus;
2.0mm vental (V) to the dura surface (Paxinos and Watson,
1986). The dura directly beneath the guide was broken, and
the guide implanted. Using dental cement, the guide and a
tether screw (Presearch Limited, UK) placed posterior to the
probe, were secured in place, and the wound sealed.
Anaesthesia was reversed using a mixture of atipamezoles

(0.02ml/100 g, s.c.) and nalbuphines (0.02ml/100 g, s.c.).
The rats were monitored until they regained their righting
reflex. The animals were allowed to recover for 1 week
before commencing the dialysis experiment. At 18 h prior to
the start of experiment, the animals were randomly assigned
to one of six circular polycarbonate microdialysis cages (+
285mm; H: 355mm) and left to acclimatise to their new
environment.

Brain Microdialysis Procedure

Before implantation, microdialysis probes (CMA/11, 2mm
active cuprophane membrane length, Biotech, UK) were
placed in 70% ethanol, and perfused at 2–5 ml/min with
artificial cerebrospinal fluid (aCSF) containing 125mM
NaCl, 2.5mM KCl, 1.18mM MgCl2 � 6H2O, 1.26mM
CaCl2 � 2H2O, and 2.0mM Na2HPO4, adjusted to pH 7.4
with 85% H3PO4 (HPLC grade). Both inlet and outlet
tubings of the probe were attached to a dual quartz lined
two-channel liquid swivel (Instech 375/D/22QE, Instech lab,
PA, USA) on a low mass spring counterbalanced arm, which
in turn was connected to a gas tight syringe (CMA Exmire
1ml, Biotech, UK) on a microinfusion pump (Univentor
864, Biotech, UK). The acetylcholinesterase inhibitor
neostigmine chloride (Sigma, Poole, UK) was prepared in
aCSF at a concentration of 100 nM. This aCSF was used
to reduce the activity of acetylcholinesterase and thus
increase the extracellular concentration of ACh. The
animals were briefly anaesthetized with isoflurane to
allow removal of the guide pin and insertion of the
microdialysis probe into the guide cannula. Probes were
perfused at 1ml/min for 2 h before samples were collected.
After this equilibration period, three basal samples
were collected at 30min intervals, before the animals were
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administered with SB-277011-A (10mg/kg, i.p.), clozapine
(10mg/kg, s.c.), olanzapine (10mg/kg s.c.), haloperidol
(0.5mg/kg s.c.), and sulpiride (10mg/kg, s.c.) or their
respective vehicles. Dialysate samples were collected into
glass vials (Chromacol Ltd, Welwyn Garden city, UK)
containing 5 ml of 0.03% v/v acetic acid for an additional
240min period.

Chromatographic Analysis of Brain Microdialysates

The detection of monoamines was carried out as previously
described (Heidbreder et al, 2001a, b) by using an HPLC
system composed of a Jasco 1580 pump (Jasco, Great
Dunmow, UK), a Gilson 231 XL autosampler fitted with a
10 ml loop (Anachem, Luton, UK), a SSI pulse dampener
(Presearch), a Decade electrochemical detector fitted with a
VT03 3mm glassy carbon cell with an in situ Ag/AgCl
(ISAAC) reference electrode and 25 mm spacer (Antec,
Leyden, The Netherlands) and a noise filter Link unit
(Antec). The recorder output of the electrochemical
detector was connected via the noise filter unit to
Millennium32 version 3.04 data acquisition system (Waters,
Milford, MA). Data were acquired at a rate of 2Hz.
Separations were performed using a 150� 1.5mm i.d.
Capcell Pak SCX UG80 5 mm column (Phenomenex,
Macclesfield, UK). The column and detector cell were
housed within the Faraday cage of the electrochemical
detector that was set to 401C. A mobile phase composed of
200mM ammonium acetate buffer (pH 6.3), containing
0.1mM EDTA and methanol (80 : 20%, v/v) was used at a
flow rate of 0.16ml/min. Eluates were detected at an
oxidation potential of 0.5 V vs in situ Ag/AgCl reference
electrode. The filter time on the Decade and Link unit were
set to 5 and 0.046 s, respectively. The limits of detection
(LOD) for DA, norepinephrine (NE), and serotonin (5-HT)
were found to be in the range 0.05–0.1 pg/ml with a signal-
to-noise (S/N) ratio of 3 : 1.
For the ACh assay, HPLC with tandem mass spectro-

metry (LC/MS-MS) was performed using an Agilent 1100
HPLC system (Agilent, Bracknell, UK) composed of a
binary gradient pumping system, a degasser and an
autosampler. Separations were carried out using a 50� 1-
mm i.d. PRP-X200 10 mm, column (Hamilton, Lutterworth,
UK). A mobile phase composed of 25mM ammonium
acetate and 25mM ammonium formate (pH 4.0) mixed
with acetonitrile (20 : 80 v/v) was used at a flow rate of
0.16ml/min. The column was thermostated to 501C. The
HPLC system was coupled to an LCQ ion trap mass
spectrometer (ThermoFinnigan, Warrington, UK) equipped
with an electrospray ionization source. The mass spectro-
meter was used in the electrospray positive ion mode. All
the samples were analyzed using the following parameters:
ion spray voltage 4.5 kV, source temperature 3001C,
capillary voltage 15 V, tube lens offset �15V, multipole
offset 1–3V, lens �26V, and multipole 2–9V. Nitrogen
was used as the curtain gas and auxillary gas at a pressure
of 80 and 10 units, respectively. Collision-associated
dissociation of ACh with helium gas was performed at
collision energy of 30%. ACh was monitored using single
reaction monitoring (SRM) of the ion transition precursor
ionm/z �146 to fragment ionm/z 87. The precursor ionm/z
146 is the molecular ion [M+H]+ and the fragment ion m/z

87 is produced from loss of the acetic acid moiety of the
molecule. Data were collected and analyzed by using
Excalibur 1.1 software (ThermoFinnigan, Warrington,
UK). The LOD of ACh was 2 fmol/ml with an S/N ratio
of 3 : 1.

Technical Note

While the three monoamines, NE, DA, and 5-HT, have been
detected simultaneously using LC with electrochemical
detection (Heidbreder et al, 2001b), ACh was quantified
by using a newly developed analytical method based on LC-
MS2 detection (Hows et al, 2002). In comparison with the
most commonly used LC methods coupled with electro-
chemical detection, the LC-MS assay method used in the
present study is very specific, minimizing the need to
separate ACh from other components present in dialysates.
The limit of detection of ACh achieved by using LC-MS2 was
comparable to the detection that can be achieved using LC-
ECD methods. However, obvious advantages of LC-MS2

assays for the detection of ACh can be summarized as
follows: (i) there is no enzymatic reactions needed in order
to separate choline from ACh; (ii) the assay provides a
means of confirming the identity of the analyte using the
specific mass transition together with its chromatographic
retention time, and (iii) although neostigmine was used in
the present study, we recently showed (Hows et al, 2002)
that LC-MS/MS allows ACh to be measured in dialysates
without the need to add neostigmine or physostigmine to
the perfusate.

Drugs

SB-277011-A (GlaxoSmithKline Pharmaceuticals, Harlow,
UK) was dissolved in 10% hydoxypropyl-b-cyclodextrine
(Sigma, St Louis, MO, USA) and administered in a volume
of 1ml/kg i.p. Clozapine (Tocris, Bristol, UK), olanzapine
(GlaxoSmithKline Pharmaceuticals, Harlow, UK), and
sulpiride (Sigma, St Louis, MO, USA) were dissolved in
0.9% saline containing a minimal amount of acetic acid,
raised to pH 6.0 with NaOH, and administered in a volume
of 1ml/kg s.c. Haloperidol (GlaxoSmithKline Pharmaceu-
ticals, Harlow, UK) was dissolved in deionized water with an
equal weight of tartaric acid, then titrated to pH 6.5 using
0.5M aqueous sodium hydroxide.
The dose of SB-277011-A has been chosen based on

pharmacokinetic characteristics (Reavill et al, 2000;
Austin et al, 2001) and behavioral properties reported
in previous studies (Reavill et al, 2000; Di Ciano et al, 2001;
Le Foll et al, 2002; Vorel et al, 2002). Doses of clozapine,
olanzapine, haloperidol, and sulpiride were based on
previous behavioral and in vivo neurochemical studies
(Parada et al, 1997; Li et al, 1998; Kuroki et al, 1999;
Heidbreder et al, 2001a; Ichikawa et al, 2002).

Histology

After completion of the final experiment, brains were
removed and fixed in 4% paraformaldehyde in phosphate
buffer. Histological verification of probe placement was
made via serial coronal sections (40 mm thick) using a
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cryostat. The sections were then processed for Fast cresyl
violet stain (Figure 1).

Data Analysis

The data were analyzed by using analyses of variance
(ANOVAs) followed by the post hoc Fisher’s protected least
significant difference pairwise comparison test when
appropriate. Statistical significance was set at a probability
level of Po0.05 for all tests. No significant differences were
found between the vehicle of SB-277011-A and vehicle of
clozapine (Cloz), olanzapine (Olanz), haloperidol (Hal), and
sulpiride (Sulp). As a result, the data were collapsed into a
single vehicle group (Veh). The average level of neuro-
transmitters was defined as basal dialysate levels, which
were analyzed by means of one-way ANOVAs with repeated
measures over time (three bins of 30min each). The effect of
drugs on extracellular levels of monoamines and ACh was
analyzed by two-way ANOVAs consisting of a between-
subjects factor of treatment (Veh, Hal, Sulp, Olanz, Cloz,
and SB-277011-A) and a repeated measurements factor of
time (eight bins of 30min each). Finally, one-way ANOVAs
with a main effect of drug treatment were used to assess the
effect of drugs on the area under the curve (AUC) for each
neurotransmitter.

RESULTS

Basal Extracellular Levels of Monoamines and ACh in
the Anterior Cingulate Cortex

The mean (7 SEM) basal extracellular concentrations in
the anterior cingulate cortex were 0.237 0.02 fmol/ml for
NE (N¼ 60), 0.267 0.04 fmol/ml for DA (N¼ 59),
0.377 0.12 fmol/ml for 5-HT (N¼ 47), and 43.197
0.54 fmol/ml for ACh (N¼ 37). An ANOVA with a main
factor of group and a repeated measurements factor of time
(three bins of 30min) was run to rule out any time effect as
well as potential group artifact. Respective ANOVAs did not
reveal any significant differences between groups (NE:
F5,52¼ 0.94, P¼ 0.5; DA: F5,53¼ 1.15, P¼ 0.34; 5-HT:
F5,40¼ 0.2, P¼ 0.97, and ACh: F5,30¼ 0.3, P¼ 0.92) and
failed to yield any significant time� group interaction (NE:
F10,104¼ 1.4, P¼ 0.2; DA: F[10,106]¼ 1.2, P¼ 0.3; 5-HT:
F[10,80]¼ 1.7, P¼ 0.09, and ACh: F[15,90]¼ 0.9, P¼ 0.6), thus
confirming stability of baseline over time and lack of
pretreatment differences between groups.

Extracellular Levels of NE, DA, and 5-HT in the Anterior
Cingulate Cortex of Vehicle-Treated Animals

The three vehicle solutions did not produce any significant
changes in extracellular levels of NE, DA, 5-HT, and ACh in the
anterior cingulate cortex. The overall ANOVA did not reveal
any significant effect of vehicle treatment (NE: F[2,22]¼ 0.08,
P¼ 0.9; DA: F[2,18]¼ 0.44, P¼ 0.6; 5-HT: F[2,18]¼ 0.09, P¼ 0.9;
ACh: F[2,12]¼ 0.8, P¼ 0.9). Therefore, values from these
animals were pooled for subsequent data analysis.

Effect of SB-277011-A (10mg/kg, i.p.), Clozapine (10mg/
kg, s.c.), Olanzapine (10mg/kg, s.c.), Haloperidol
(0.5mg/kg, s.c.), and Sulpiride (10mg/kg, s.c.) on
Extracellular Levels of NE in the Rat Anterior Cingulate
Cortex

SB-277011-A, clozapine, and olanzapine induced a signifi-
cant elevation in dialysate NE levels. Clozapine, olanzapine,
and SB-277011-A produced their maximal increase within
60min after drug administration. The effect was sustained
for both clozapine and olanzapine, whereas the effect
induced by SB-277011-A gradually decreased and reached
baseline levels 180min after the drug was administered. In
contrast, neither sulpiride nor haloperidol altered dialysate
NE levels (Figure 2).

Effect of SB-277011-A (10mg/kg, i.p.), Clozapine (10mg/
kg, s.c.), Olanzapine (10mg/kg, s.c.), Haloperidol
(0.5mg/kg, s.c.), and Sulpiride (10mg/kg, s.c.) on
Extracellular Levels of DA in the Rat Anterior Cingulate
Cortex

SB-277011-A, clozapine, olanzapine, and sulpiride induced
a significant elevation in dialysate levels of DA, whereas
haloperidol did not alter dialysate levels of DA (Figure 3).
Clozapine produced an asymptotic increase within 60min
postadministration that lasted to the end of the experiment.
Both olanzapine and SB-277011-A produced their maximal
increase at 60min post-treatment and then gradually
decreased to baseline levels by the end of the experiment.
Finally, sulpiride produced a delayed increase in DA, which

Figure 1 Representative photomicrograph of a coronal section at the
level of the anterior cingulate subregion of the mPFC. The arrowheads
indicate the segment of the microdialysis membrane.
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started 90-min postadministration and lasted to the end of
the experiment.

Effect of SB-277011-A (10mg/kg, i.p.), Clozapine (10mg/
kg, s.c.), Olanzapine (10mg/kg, s.c.), Haloperidol
(0.5mg/kg, s.c.), and Sulpiride (10mg/kg, s.c.) on
Extracellular Levels of 5-HT in the Rat Anterior
Cingulate Cortex

There were no significant differences between dialysate
levels of 5-HT with vehicle, SB-277011-A, clozapine,
olanzapine, haloperidol, and sulpiride groups (Figure 4).

Effect of SB-277011-A (10mg/kg, i.p.), Clozapine (10mg/
kg, s.c.), Olanzapine (10mg/kg, s.c.), Haloperidol
(0.5mg/kg, s.c.), and Sulpiride (10mg/kg, s.c.) on
Extracellular Levels of ACh in the Rat Anterior
Cingulate Cortex

SB-277011-A, clozapine, and olanzapine produced a
significant elevation in dialysate levels of ACh, whereas
neither haloperidol nor sulpiride significantly altered
dialysate levels of ACh (Figure 5). Clozapine, olanzapine,
and SB-271011-A produced their maximal effects on
extracellular levels of ACh within 60min postadministra-
tion and then gradually decreased by the end of the
experiment.
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Figure 2 Time-dependent effect of SB-277011-A (10mg/kg, i.p.; N¼ 7),
clozapine (Cloz) (10mg/kg, s.c.; N¼ 8), olanzapine (Olanz) (10mg/kg, s.c.;
N¼ 5), haloperidol (Hal) (0.5mg/kg, s.c.; N¼ 6), and sulpiride (Sulp)
(10mg/kg, s.c.; N¼ 8) on extracellular levels of NE in the rat anterior
cingulate cortex (lower panel). The overall ANOVA applied to the NE data
revealed a significant main effect of treatment (F[5,52]¼ 12.91; Po0.001) as
well as a significant treatment� time interaction (F[35,364]¼ 4.05;
Po0.001). Post hoc analysis revealed significant differences between Veh
and Cloz (Po0.01), Olanz (Po0.01), and SB-277011-A (Po0.01), but no
significant differences between Hal and Sulp. The upper panel represents
the cumulative increase (%AUC (7 SEM)) following drug administration.
ANOVA applied to AUC revealed a significant main effect of treatment
(F[5,51]¼ 17.27; Po0.001); post hoc analysis confirmed that Olanz
(Po0.001), Cloz (Po0.001), and SB-277011-A (Po0.01) increased
significantly NE release compared with both Veh and Hal. The arrow
indicates time at which the drug was administered.
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Figure 3 Time-dependent effect of SB-277011-A (10mg/kg, i.p.; N¼ 7),
Cloz (10mg/kg, s.c.; N¼ 8), Olanz (10mg/kg, s.c.; N¼ 5), Hal (0.5mg/kg,
s.c.; N¼ 6), and Sulp (10mg/kg, s.c.; N¼ 8) on extracellular levels of DA in
the rat anterior cingulate cortex (lower panel). The overall ANOVA
applied to the DA data revealed a significant main effect of treatment
(F[5,49]¼ 5.21; Po0.01) as well as a significant treatment� time interaction
(F[35,343]¼ 2.65; Po0.001). Post hoc analysis revealed significant differences
between Veh and SB-277011-A (Po0.05), Cloz (Po0.01), Olanz
(Po0.05), and Sulp (Po0.05), but no significant difference with Hal. The
upper panel represents the cumulative increase (%AUC (7 SEM))
following drug administration. ANOVA applied to AUC revealed a
significant main effect of treatment (F[5,53]¼ 4.92; Po0.001); post hoc
analysis confirmed that Sulp (Po0.05), Olanz (Po0.05), Cloz (Po0.001),
and SB-277011-A (Po0.05) increased significantly DA release
compared with Veh. The arrow indicates time at which the drug was
administered.
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DISCUSSION

The present study aimed at investigating the profile of
systemic administration of the selective D3 receptor
antagonist SB-277011-A on in vivo extracellular levels of
monoamines and ACh in the rat anterior cingulate
subregion of the mPFC. In addition, the effect of SB-
277011-A was compared with the respective neurochemical
profiles of both typical and atypical APDs including
clozapine, olanzapine, sulpiride, and haloperidol.

Electrochemical Detection of Extracellular ACh and
Monoamine Levels in the Presence of an
Acetylcholinesterase Inhibitor

One controversial methodological issue related to the
electrochemical detection of ACh and monoamines in
microdialysates from the rat brain is the addition of
acetylcholinesterase inhibitors to the perfusion fluid to
improve basal recovery of ACh by hindering its enzymatic
degradation (Ichikawa et al, 2000). The argument is that
artificially increased amounts of ACh in the extracellular
space are likely to increase activation of inhibitory
presynaptic autoreceptors, thus decreasing subsequent
ACh release from nerve terminals and possibly dampening
the responsiveness of cortical cholinergic neurons to
pharmacological or behavioral stimulation. Furthermore,
the presence of a local acetylcholinesterase inhibitor would
reduce the efficiency with which extracellular ACh is
removed from the synaptic environment, potentially result-
ing in artificially elevated levels of cortical ACh that persist
beyond the real time frame of the neuronal response. Thus,
one may argue that manipulations that are associated with
transient increases in ACh efflux in a physiological system
may appear to elicit more long-lasting increases in the
presence of a local acetylcholinesterase inhibitor. In the
most recent study by Ichikawa et al (2002), results show that

in the presence of neostigmine (0.3 mM), clozapine (20mg/
kg), but not haloperidol (1mg/kg), produced an enhanced
increased outflow of ACh compared with the no-neostig-
mine design. Thus, the effect of clozapine (20mg/kg, s.c.) on
dialysate ACh concentrations was potentiated two- to three-
fold in the presence of 0.3 mM neostigmine compared with
the increase observed in the absence of the acetylcholines-
terase inhibitor. In contrast, neostigmine 0.3 mM given in
the perfusion medium did not affect the inability of
haloperidol (1mg/kg, s.c.) to increase dialysate ACh
concentrations in the mPFC in the absence of neostigmine.
Two relevant observations can be made with regard to these
results: (1) only a high concentration of neostigmine
(0.3 mM) was shown to increase basal ACh levels in the
mPFC (6167 55 vs 19.57 0.7 fmol) and to potentiate the
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Figure 4 Time-dependent effect of SB-277011-A (10mg/kg, i.p.; N¼ 4),
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s.c.; N¼ 7), and Sulp (10mg/kg, s.c.; N¼ 4) on extracellular levels of 5-HT
in the rat anterior cingulate cortex (lower panel). The arrow indicates time
at which the drug was administered.
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Figure 5 Time-dependent effect of SB-277011-A (10mg/kg, i.p.; N¼ 5),
Cloz (10mg/kg, s.c.; N¼ 5), Olanz (10mg/kg, s.c.; N¼ 5), Hal (0.5mg/kg,
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applied to the ACh data revealed a significant main effect of treatment
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(F[35,196]¼ 5.59; Po0.01). Post hoc analysis revealed significant differences
between Veh and SB-277011-A (Po0.01), Cloz (Po0.01), and Olanz
(Po0.01) but no significant differences with Hal and Sulp, which did not
differ from each other. The upper panel represents the cumulative increase
(%AUC (7 SEM)) following drug administration. ANOVA applied to AUC
revealed a significant main effect of treatment (F[5,31]¼ 7.38; Po0.001);
post hoc analysis confirmed that Olanz (Po0.001), Cloz (Po0.001), and
SB-277011-A (Po0.01) increased significantly ACh release. The arrow
indicates time at which the drug was administered.
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effect of clozapine on ACh outflow in the mPFC up to a two-
to three-fold increase; (2) in the present study, neostigmine
was perfused at a low concentration of 0.1 mM that is three
times lower than the concentration used in the Ichikawa
study (Ichikawa et al, 2002). Thus, although it is reasonable
to suggest that, in the present study, the presence of
neostigmine in the perfusion medium produced an over-
estimation of basal dialysate levels of ACh (see also DeBoer
and Abercrombie, 1996; Acquas and Di Chiara, 1999), it is
rather unlikely that 0.1 mM neostigmine modified the
dynamics and temporal pattern of drugs in a significant
manner. This is further supported by evidence showing that
although basal levels of ACh in the mPFC are dependent on
the dose of neostigmine (0.05 mM: 0.0537 0.009 pmol/min
vs 0.5 mM: 0.1707 0.023 pmol/min) added to the perfusion
fluid, cortical ACh efflux during and following tactile
stimulation is increased relative to baseline in a similar
manner at these two neostigmine concentrations (0.5 vs
0.05 mM), suggesting that the responsiveness of cortical
neurons to this tactile stimulation procedure is not
compromised by artificially increased occupation of pre-
synaptic inhibitory autoreceptors resulting from the inclu-
sion of up to 0.5 mM of neostigmine in the perfusion
fluid (Himmelheber et al, 1998). Furthermore, the
temporal pattern of the increases in ACh efflux elicited
by tactile stimulation is similar following perfusion of
neostigmine at both 0.5 and 0.05 mM (Himmelheber et al,
1998).
It has also been argued that the presence of an

acetylcholinesterase inhibitor in the perfusion fluid may
affect the release of monoamines in general, DA in
particular, and that the pharmacological response of striatal
cholinergic neurons may be altered under such conditions.
For example, it has been suggested that the stimulatory
influence of DA D1 receptors on striatal ACh release is a
function of the concentration of neostigmine (0, 10, and
100 nM) in the perfusion fluid (DeBoer and Abercrombie,
1996). Furthermore, continuous perfusion with neostigmine
(0, 10, 50, and 100 nM) seems to attenuate the effect of L-
dopa on striatal DA release in a dose-dependent manner
(Izurieta-Sanchez et al, 2000). However, these findings can
be challenged by the observation that, in both the DeBoer
and Abercrombie (1996) and Izurieta-Sanchez et al (2000)
studies, changes in either the amount of D1-stimulated
release or in the effect of L-dopa on DA release are
associated with significant changes in basal values. Thus,
recalculation of these data as percent changes from basal
release shows that apparent changes in the release of either
ACh or DA are, in fact, independent from neostigmine
concentrations in the perfusion fluid (see for example Di
Chiara et al, 1996; Acquas and Di Chiara, 1999). These
conclusions are also consistent with those of Acquas and
Fibiger (1998), which showed that DA regulation of striatal
ACh release is independent from neostigmine concentra-
tions when data are expressed as percent values of basal
release. That said, in order to avoid these methodological
issues and potential confounding variables, there is a
growing body of evidence supporting the rationale for the
use of new sensitive analytical methods for the detection of
ACh and choline without the use of acetylcholinesterase
inhibitors in the perfusion medium (see for example Hows
et al, 2002; Ichikawa et al, 2000, 2002).

A Potential Role of DA D3 Receptors in the Effect of
APDs on Anterior Cingulate DA and NE
Neurotransmission Systems

The primary findings of the present study are that acute
administration of SB-277011-A, clozapine, and olanzapine
produced a significant increase of DA, NE, and ACh
extracellular levels without affecting 5-HT levels in the
anterior cingulate cortex of freely moving rats. The acute
administration of sulpiride also significantly increased
extracellular levels of DA, but with a delayed onset of
action compared with SB-277011-A, clozapine, and olanza-
pine. Finally, haloperidol did not alter any of the three
monoamines in the anterior cingulate cortex. These results
add to a growing body of evidence suggesting a differentia-
tion between typical and atypical APD drugs in the anterior
cingulate cortex and a role of D3 receptors in the APD drug
profile.
In a previous study, Reavill et al (2000) showed that SB-

277011-A does not affect ex vivo DA levels in the nucleus
accumbens, striatum, or frontal cortex, but can reverse the
in vivo quinelorane-induced decrease in DA levels in
the nucleus accumbens in a dose-dependent manner. The
present study extends these results by demonstrating that
SB-277011-A can increase both DA and NE levels without
affecting serotonergic neurotransmission in the anterior
cingulate cortex. In addition, SB-277011-A displayed a so-
called atypical APD profile as the effects were similar to the
ones observed for both clozapine and olanzapine.
The preferential increase of DA (Kuroki et al, 1999;

Moghaddam and Bunney, 1990; Nomikos et al, 1994; Pehek
and Yamamoto, 1994; Volonte et al, 1997) and NE (Li et al,
1998; Westerink et al, 2001) following both clozapine and
olanzapine, but not haloperidol treatment is in line with
data from the prelimbic/infralimbic subregion of the mPFC
(Li et al, 1998; Moghaddam and Bunney, 1990; Nomikos et
al, 1994; Westerink et al, 2001). The results obtained with
sulpiride are also in agreement with findings reporting that
benzamides such as sulpiride or raclopride stimulate DA
release in the striatum but have little effect on DA release in
the mPFC (Ichikawa and Meltzer, 1999; Kuroki et al, 1999;
Moghaddam and Bunney, 1990). In addition, consistent
with the lack of effects of benzamides on NE release in the
prefrontal cortex (Westerink et al, 2001), sulpiride did not
alter levels of NE in the anterior cingulate cortex in the
present study. These results are also in agreement with data
obtained using inducible immediate-early gene approach to
mark activated neurons and extended circuits in response
to typical and atypical APDs (Kovacs et al, 2001; Miller,
1990; Nguyen et al, 1992; Robertson and Fibiger, 1992).
Both typical and atypical APDs activate neurons in the
nucleus accumbens. However, whereas haloperidol induces
c-fos expression in the dorsal striatum, clozapine, and
olanzapine induce c-fos expression in the prefrontal cortex
and some limbic structures (eg lateral septal nucleus,
islands of Calleja). In addition, the c-fos response to
clozapine in the islands of Calleja and prefrontal cortex
seems to be selectively mediated by the DA D3 receptor
(Guo et al, 1998).
The mechanisms by which selective antagonism at DA D3

receptors can increase DA outflow in the mPFC are
unknown. Haloperidol, clozapine, and olanzapine have
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been shown to stimulate the percentage of burst firing and
spikes per burst of VTA DA neurons antidromically
identified from the mPFC (Gessa et al, 2000). Conversely,
the acute administration of SB-277011-A (3 and 10mg/kg)
has been shown to preferentially decrease bursting activity
(fewer spikes per burst) and decrease firing rate of
spontaneously active VTA DA neurons over A9 DA neurons
(Ashby et al, 2000). Altogether, these results contrast with
the ability of these compounds to modify DA outflow in the
mPFC. Thus, the effects of clozapine and olanzapine on
extracellular levels of DA in the mPFC do not seem to
depend on their stimulating effect on mesocortical DA
neurons. Furthermore, the findings after the acute admin-
istration of SB-277011-A suggest that haloperidol, chlor-
promazine, and clozapine do not increase the firing rate of
spontaneously active DA neurons via blockade of D3

receptors. Alternatively, the effects of these drugs may be
mediated through a local action in the mPFC as suggested
by the finding that local perfusion of both clozapine and
olanzapine can increase DA outflow in the mPFC, whereas
microinfusion of haloperidol slightly decreases DA levels
(Gessa et al, 2000). The question of whether or not local
application of SB-277011-A can modify DA efflux in the
mPFC warrants further investigations.
It has been suggested that both DA and NE neurons are

interacting closely in the mPFC (Carboni et al, 1990; Gresch
et al, 1995; Tassin, 1992; Yamamoto and Novotney, 1998).
However, data on benzamides (Westerink et al, 2001)
together with the present results with sulpiride suggest that
DA D2 receptors are not involved in the regulation of
cortical NE release. In addition, observations that the
release of DA and NE in the mPFC have been observed to
change independently, which suggests that modifications in
the levels of the two neurotransmitter systems are correlated
rather than coupled. For instance, whereas the a1-adreno-
ceptor antagonist prazosin induces only increases in NE
levels, the b-adrenoceptor antagonist propanolol produces
specific increase in DA in the mPFC (Kawahara et al, 2001).
To date, investigations attempting to understand the
mechanism of interactions between NE and DA have not
yielded conclusive answers. Reuptake mechanisms have
been proposed to play a critical role in DA–NE interactions
in the mPFC. This idea is based on the similar affinity
displayed by the noradrenaline transporter for NE and DA,
which may contribute to the removal of DA from the
extracellular fluid (Carboni et al, 1990; Tanda et al, 1997).
Another hypothesis suggests that the anatomical connec-
tions between the locus coereleus and the ventral tegmental
area (VTA) and the a1-adrenoceptors at the level of the
VTA may be involved in these DA–NE interactions
(Grenhoff et al, 1993; Tassin, 1992). Further investigations
are needed to clarify this issue.

A Potential Role of DA D3 Receptors in the Effect of
APDs on Cholinergic Function in the Anterior Cingulate
Cortex

Similar to their effects on DA and NE, SB-277011-A,
clozapine, and olanzapine increased extracellular ACh,
whereas haloperidol and sulpiride did not alter ACh levels
in the anterior cingulate subregion of the mPFC. It has been
shown that clozapine can increase ACh release in the mPFC,

nucleus accumbens, and dorsal striatum by using micro-
dialysis with acetylcholinesterase inhibition to increase
basal ACh to detectable levels (Parada et al, 1997). More
recently, Ichikawa et al (2002) have shown that atypical
APDs such as clozapine (2.5–20mg/kg), olanzapine (10mg/
kg), risperidone (1mg/kg), and ziprasidone (3mg/kg) can
increase ACh levels in the mPFC in contrast with the typical
APDs haloperidol (0.1–1mg/kg), S(�)-sulpiride (10–25mg/
kg), and thioridazine (5–20mg/kg), which failed to modify
extracellular ACh levels in the mPFC.
Several mechanisms may account for the effects of APDs

on extracellular levels of ACh in the mPFC. For example,
muscarinic M2 autoreceptor antagonism and muscarinic M1

receptor stimulation by clozapine or muscarinic M2

receptor antagonism by olanzapine (Bymaster et al, 1996)
may be involved in this effect. This, however, remains
unclear as thioridazine, which has affinity for M1 and M2

receptors comparable to that of olanzapine, fails to increase
ACh levels in the mPFC (Ichikawa et al, 2002). Furthermore,
both risperidone and ziprasidone can increase ACh levels in
the mPFC (Ichikawa et al, 2002) despite their lack of affinity
for M1 or M2 receptors. Finally, SB-277011-A has been
shown to produce less than 40% inhibition at both M1

and M2 receptors (Reavill et al, 2000). Beyond direct effects
of APDs on muscarinic cholinergic receptors, antagonism at
5-HT2A receptors may be involved. A higher 5-HT2A/D2

receptor antagonism ratio, which is a common feature of
atypical APDs compared with typical APDs (Kuroki et al,
1999; Heidbreder et al, 2001a), may contribute to the ability
of APDs to increase ACh release in the mPFC. Recent
studies have also shown a positive relation between the
potency of clozapine and olanzapine to increase extra-
cellular levels of DA in the mPFC and their respective
affinities for 5-HT1A over DA D2 receptors (Heidbreder et
al, 2001a). Interestingly, clozapine (pKi values for D2

and 5-HT1A are 7.0 and 6.7, respectively) and SB-277011-A
(pKi values for D2 and 5-HT1A are 5.55 and 5.53,
respectively) have a similar 5-HT1A/D2 ratio of 0.96 and
0.99, respectively, in contrast with haloperidol (5-HT1A/D2

ratio equivalent to 0.61). Thus, a higher 5-HT1A/D2 ratio
may contribute to both increased DA and ACh outflow in
the mPFC via direct and/or indirect 5-HT1A receptor
stimulation (Kuroki et al, 1999; Heidbreder et al, 2001a;
Ichikawa et al, 2002).
Like other brain neurotransmitters such as DA and NE

that have been implicated in cognitive functions, cortical
ACh has been suggested to play an important role in
cognition. More specifically, prefrontal ACh has been
implicated in working memory processes as demonstrated
by behavioral tasks including delayed nonmatching to
sample (Broersen et al, 1995) and object recognition tests
(Aigner et al, 1987; Giovannini et al, 1998; Scali et al, 1994).
Furthermore, cognitive-enhancing drugs can increase ACh
release in the prefrontal cortex (Scali et al, 1994; Yamamoto
et al, 1994) whereas direct application of the muscarinic
cholinergic receptor antagonist scopolamine into the frontal
cortex (Mouton et al, 1988) or the hippocampus (Messer et
al, 1991) impairs working memory. Consistent with these
findings, increased ACh release has been demonstrated in
the prefrontal cortex during and after performance in a
delayed alternation task (Hironaka et al, 2001). Thus,
release of ACh in the anterior cingulate cortex heightens
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arousal, which in turn is required for the processing of
sensory and motor information as well as spatial working
memory. Taken together, these findings suggest that the
increase in prefrontal ACh levels produced by SB-277011-A
and both clozapine and olanzapine indicates a potential
involvement of these drugs in improvement of cognitive
performance. The potential role of DA D3 receptor
antagonism on memory processes has already been
suggested by the finding that the relatively selective DA
D3 receptor antagonist nafadotride blocks scopolamine-
induced memory disruption (Sigala et al, 1997). In line with
these data, R(+)-7-OH-DPAT has been shown to impair
passive avoidance learning through DA D3 receptor, but not
D1 or D2 receptors (Ukai et al, 1997). Furthermore, the
involvement of atypical APDs in cognitive functions is
suggested by clinical data reporting cognitive improve-
ments, especially attention and verbal fluency, in schizo-
phrenic patients treated with clozapine (Lee et al, 1994;
Manschreck et al, 1999). In contrast, typical neuroleptic
treatment produces only minor improvements in cognitive
function (Lee et al, 1994). The increase in ACh outflow
following atypical APD treatment is also consistent with
data demonstrating the antimuscarinic properties of
both clozapine and olanzapine, but not haloperidol (By-
master et al, 1996). Such properties have been suggested by
the antagonism of clozapine, but not haloperidol, pretreat-
ment on oxotremorine-induced elevation in striatal ACh
(Sethy et al, 1996). Finally, olanzapine can reduce muscari-
nic receptor availability in a dose-dependent manner
(Raedler et al, 2000).

CONCLUSIONS

The results obtained in the present study support the
possible implication of DA D3 receptors in the mechanism
of action of atypical APD drugs at the level of the anterior
cingulate cortex. These results further support clinical data
reporting overexpression of the D3 receptor in the ventral
striatum of schizophrenic patients who were free of APD
medication for at least 1 month prior to death (Gurevich et
al, 1997). Furthermore, D3 receptor overexpression has been
proposed to be responsible for the sensitization to DA
agonists. Consistent with these observations, a growing
body of evidence also involves the D3 receptor in
mechanisms of drug dependence and abuse: (1) DA D3

receptors are implicated in cue-controlled modulation of
cocaine seeking behavior (Pilla et al, 1999; Di Ciano et al,
2001; Vorel et al, 2002) and cocaine cue-conditioned
hyperactivity (Le Foll et al, 2002); (2) DA D3 receptor-
preferring agonists generalize from the discriminative
stimulus effects of cocaine (Acri et al, 1995); (3) DA D3

receptor-preferring agonists can be self-administered
(Caine et al, 1997; Caine and Koob, 1993), and (4) DA D3

receptor-preferring agonists can produce conditioned place
preference (Khroyan et al, 1997). Altogether these findings
suggest an important role of DA D3 receptors in the
mechanisms by which atypical APDs enhance DA, NE, and
ACh in the mPFC. Furthermore, the potential use of
selective DA D3 receptor antagonists as a new pharma-
cotherapeutic approach for the treatment of drug depen-
dence is warranted.
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