News & Views in 2021

Filter By:

Article Type
Year
  • The dynamics of quantum information and entanglement is closely linked to the physics of thermalization. A quantum simulator comprised of superconducting qubits has measured the spread of quantum information in a many-body system.

    • A. Safavi-Naini
    News & Views
  • Observations of an electronic state where rotational symmetry is broken show that this could be a generic feature of moiré materials.

    • Benjamin E. Feldman
    News & Views
  • A condensate of excitons was theoretically conjectured in the 1960s but has been challenging to pinpoint experimentally. Evidence has now emerged that it could be the ground state of tungsten ditelluride, a rich topological material.

    • Vitor M. Pereira
    News & Views
  • Promising machine learning techniques can deduce the properties of merging black holes from gravitational wave signals a million times faster than current state-of-the-art methods.

    • Rory Smith
    News & Views
  • Superconducting devices ubiquitously have an excess of broken Cooper pairs, which can hamper their performance. It is widely believed that external radiation is responsible but a study now suggests there must be an additional, unknown source.

    • Andrew P. Higginbotham
    News & Views
  • Acoustic waveguides have been used to implement the long-theorized phenomenon of non-Abelian braiding, in which abstract geometric constructions are used to generate transformations between different modes.

    • Yidong Chong
    News & Views
  • Solid-state sources of entangled photons with tailored properties are key elements for integrated quantum computing. Refractive-index perturbations propagating faster than the speed of light may offer a practical approach for generating entangled photon pairs.

    • Nahid Talebi
    News & Views
  • The reliability of quantum computers depends on the correction of noise-induced errors, which requires additional resources. Experiments on superconducting qubits have now demonstrated the capabilities of a less-demanding scheme for error detection.

    • Morten Kjaergaard
    News & Views
  • When crystal defects are present in an ensemble of spinning colloids that induce transverse forces on each other, the defects assemble into grain boundaries that can break the system apart into a set of crystal whorls.

    • Cynthia J. O. Reichhardt
    • Charles Reichhardt
    News & Views
  • Nonlinear optical effects are by default weak but they can be enhanced by sculpting the resulting spectrally periodic pulses from a fibre laser into an optimal shape.

    • Thibaut Sylvestre
    News & Views
  • Magnons are collective spin excitations that can propagate over long distances — an attractive trait for information-transfer technologies — but we need to better understand their thermodynamic properties. A platform using graphene may hold the key.

    • Matteo Carrega
    • Stefan Heun
    News & Views
  • Solitary waves — solitons — occur in a wide range of physical systems with a broad array of attributes and applications. Carefully engineered light–matter interactions have now produced an optomechanical dissipative soliton with promising properties.

    • Alessia Pasquazi
    News & Views
  • Charge density waves are the periodic spatial modulation of electrons in a solid. A new experiment reveals that they can originate from two different electronic bands in a prototypical transition metal dichalcogenide, NbSe2.

    • Young-Woo Son
    News & Views
  • To test the validity of theoretical models, the predictions they make must be compared with experimental data. Instead of choosing one model out of many to describe mass measurements of zirconium, Bayesian statistics allows the averaging of a variety of models.

    • Alessandro Pastore
    News & Views
  • Active matter can have macroscopic properties that defy the usual laws of hydrodynamics. Now these tell-tale properties have been traced down to the non-equilibrium character and handedness of interactions between individual particles.

    • Patrick Pietzonka
    News & Views
  • Precise measurements of the annihilation of an electron–positron pair into a neutron–antineutron pair allow us to take a look inside the neutron to better understand its complex structure.

    • Galina Pakhlova
    News & Views
  • Interacting quantum systems are difficult to formulate theoretically, but Nikolai Bogoliubov offered a workaround more than 70 years ago that has stood the test of time. Now, correlations that are a crucial feature of his theory have been observed.

    • S. S. Hodgman
    • A. G. Truscott
    News & Views
  • It has long been assumed that the quantum statistics of light are preserved when photons interact with plasmons. An analysis of the scattering process shows that this is not always the case, as light can mix and match different plasmonic pathways.

    • Mark Tame
    News & Views
  • Most systems exhibiting topological superconductivity are artificial structures that require precise engineering. Now, a layered material shows tantalizing signs of the phenomenon.

    • Jose L. Lado
    • Peter Liljeroth
    News & Views
  • Molecular spin qubits that can be controlled electrically are typically susceptible to decoherence. Holmium molecular spins provide a solution by combining robust coherence with strong spin–electric coupling.

    • Roberta Sessoli
    News & Views