News & Views in 2011

Filter By:

Article Type
Year
  • Anisotropies in conductivity measurements of bismuth point to the spontaneous breaking of intrinsic degeneracies in its electronic structure — and suggest there may be still more to learn from this well-studied material.

    • Siddharth A. Parameswaran
    • Vadim Oganesyan
    News & Views
  • Is it possible for a metal to exist in a strictly two-dimensional system? This may seem trivial, but it is actually a longstanding problem. The electrical characteristics of an array of superconducting islands on a normal metal suggests that the answer could be 'yes'.

    • James F. Annett
    News & Views
  • An experimental technique based on Doppler velocimetry provides a detailed picture of electronic spins as they diffuse, drift and turn under the action of an electric field in a two-dimensional electron gas.

    • Giovanni Vignale
    News & Views
  • The realization of a single-particle Stirling engine pushes thermodynamics into stochastic territory where fluctuations dominate, and points towards a better understanding of energy transduction at the microscale.

    • Jordan M. Horowitz
    • Juan M. R. Parrondo
    News & Views
  • Topological defects are encountered in fields ranging from condensed-matter physics to cosmology. These broken-symmetry objects are intrinsically local, but theoretical work now suggests that non-local quantum superpositions of such local defects might arise in a quantum phase transition.

    • K. Birgitta Whaley
    News & Views
  • An open quantum system loses its 'quantumness' when information about the state leaks into its surroundings. Researchers now show how this decoherence can be controlled between two incompatible regimes in the case of a single photon.

    • Julio T. Barreiro
    News & Views
  • The realization that primordial black holes produce oscillations when they pass through stars brings us one step closer to observing traces of this dark-matter candidate that formed in the early Universe.

    • Anne Green
    News & Views
  • Monolayer graphene is a semimetal with no bandgap, and bilayer graphene is a semiconductor with a tunable gap. A trio of studies now shows that trilayer graphene can be either, depending on how its layers are stacked — behaviour that could support exotic new electronic states.

    • Amir Yacoby
    News & Views
  • Manipulating the electrons trapped in quantum-dot pairs is seen as one possible route to quantum computation. This idea is now extended to three quantum dots, enabling a whole host of extended functionality.

    • Frank Koppens
    News & Views
  • Fibre networks inspire an update to a century-old criterion for mechanical integrity — showing that a little bending resistance can go a long way.

    • Erik van der Giessen
    News & Views
  • Defects in diamond crystals possess rare physical properties that can enable new forms of technology. Unlocking this potential requires rapid quantum-state measurement, a 'quantum snapshot', which has now been achieved.

    • John J. L. Morton
    • Simon C. Benjamin
    News & Views
  • An in-plane magnetic field usually destroys the isotropic fractional quantum Hall states of two-dimensional electron systems, and gives rise to anisotropic liquid-crystal-like states. An unexpected observation of the coexistence of both states at once suggests the emergence of a new quantum phase of matter.

    • Chetan Nayak
    News & Views
  • Heavy electrons, formed through the quantum mixture of localized and itinerant electrons, can pair to create unconventional superconductivity in a two-dimensional lattice that is just one-unit-cell thick.

    • J. D. Thompson
    News & Views