Reviews & Analysis

Filter By:

Article Type
Year
  • Inspired by the observed coherent interface between hexagonal α-Fe2O3 and tetragonal fluorine-doped SnO2, an oxygen sublattice-matching paradigm is proposed to grow textured films on lattice-mismatched substrates. Through assessing the similarity of Voronoi cells for sublattices, this approach offers opportunities to synthesize (semi)coherent heterostructures and textured films.

    Research Briefing
  • Hybrid organic–inorganic perovskite materials have promise as the photovoltaic technology of the future. A method for spectroscopic optical control reveals how the structural dynamics and vibrations of a perovskite’s organic cations affect the electronic performance of working photovoltaic devices.

    Research Briefing
  • Oxidation can degrade the properties and functionality of three-dimensional bulk metallic glasses. However, the formation of percolating oxide networks in metallic glass nanotubes or nanosheets can induce interesting properties, such as a recoverable strain of 10–20% and elastic modulus of 20–30 GPa, which are rarely observed in their bulk counterparts.

    Research Briefing
  • Polymers made by click chemistry with spirocyclic building blocks form membranes that separate the components of crude oil based on molecular size and type, potentially using far less energy than distillation. Key enablers of this separation are moderate levels of polymer dynamic motion and frustrated chain packing.

    Research Briefing
  • The discovery of passivating agents for perovskite photovoltaics can be an arduous and time-consuming process. Now, a machine-learning model is reported that accelerates the selection of bifunctional pseudo-halide passivators. The identified pseudo-halide passivators were experimentally shown to enhance the performance of perovskite solar cells.

    Research Briefing
  • A traditional physical-reservoir device has limited flexibility and cannot perform well across a range of computing tasks, owing to the fixed reservoir properties of the physical system. However, by exploiting the rich magnetic phase spaces of a single chiral magnet, reservoir properties can be reconfigured. This control enables on-demand optimization of computational performance across diverse machine-learning tasks.

    Research Briefing
  • Self-healing behaviour in a nanotwinned diamond composite, at room temperature, has been quantitatively evaluated through tensile testing. The phenomenon is shown to arise from a transition of atomic interactions from repulsion to attraction and the formation of nanoscale diamond ‘osteoblasts’, in analogy to the process of bone healing in living organisms.

    Research Briefing
  • Inspired by valley pseudospins in two-dimensional materials, high-quality-factor (high-Q) spin–valley states were created through the photonic Rashba-type spin splitting of a bound state in the continuum. This approach enabled the construction of a coherent and controllable spin-optical laser using monolayer-integrated spin–valley microcavities without requiring magnetic fields or cryogenic temperatures.

    Research Briefing
  • By optimizing the molecular organization of blue-emitting organic semiconductors, the vulnerability of the materials to extrinsic impurities that cause charge trapping, such as oxygen and water, is strongly reduced. Steric shielding of the electron-transporting core is shown to increase the electron transport by several orders of magnitude.

    Research Briefing
  • Pressure sensing is challenging in liquid environments, where typical solid-state sensors do not perform well. A sensor with solid–liquid–liquid–gas multiphasic interfaces — its design inspired by the lotus leaf, and in which a trapped air layer modulates capacitance changes with pressure — is shown to achieve near-ideal pressure sensing and is well suited to liquid environments.

    Research Briefing
  • The transmission spectrum of single-molecule junctions provides fingerprint information on the charge-transport properties. A technique called single-molecule photoelectron tunnelling spectroscopy has been developed that enables mapping of the transmission spectrum beyond the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap at room temperature and can be used to explore the energy-dependent charge transport through single-molecule junctions.

    Research Briefing
  • High-quality aluminium nitride (AlN) heteroepitaxial films are obtained by the controlled discretization and coalescence of columns using nanopatterned AlN/sapphire templates with regular hexagonal holes. The density of dislocation etch pits in the AlN heteroepitaxial films is reduced to approximately 104 cm–2, approaching the value of that in AlN bulk single crystals.

    Research Briefing
  • A scalar scheme has been proposed to design photonic crystals that possess bulk dispersions resembling scalar waves and surface modes that support skyrmion-like textures. This approach addresses the challenges of realizing three-dimensional topological photonic crystals, which usually have complicated dispersions and leaky surface modes inside the light cone.

    Research Briefing
  • The output mechanical energy densities of ferroelectric polymers remain orders of magnitude smaller than those of piezoelectric ceramics and crystals, limiting their applications in soft actuators. But polymer composites subject to an electro-thermally driven ferroelectric phase transition under low electric fields are now shown to have giant actuation strains and large energy densities.

    Research Briefing
  • Spectroscopic and structural measurements often give conflicting results about the role of disorder in determining the properties of energy materials. A hybrid neutron scattering technique is used to measure atomic correlations in time and space for cubic GeTe, revealing that anisotropic elastic interactions mimic disorder but the time-averaged structure is crystalline.

    Research Briefing
  • When BiFeO3 layers are confined between TbScO3 layers in an epitaxial superlattice, crystallographically orthogonal voltages can induce reversible, non-volatile switching between polar and antipolar states in BiFeO3. This symmetry switch also leads to marked changes in the nonlinear optical response, piezoresponse and resistivity of the system.

    Research Briefing