Reviews & Analysis

Filter By:

Article Type
Year
  • Use of graphene in a transistor configuration offers an alternative to metal electrodes for the recording of ultraslow neural potentials that occur in neurologic diseases.

    • Jed A. Hartings
    News & Views
  • Higher-order topological acoustic metamaterials on kagome lattices, which host topologically protected corner states, can confine sound at corners. This may lead to applications of acoustic metamaterials in local acoustic field enhancement, trapping and manipulating of particles, and acoustic sensing and probing.

    • Zhengyou Liu
    News & Views
  • Electro-optic modulators based on epitaxial barium titanate integrated on silicon can reach speeds up to 50 Gbit s–1.

    • Mo Li
    • Hong X. Tang
    News & Views
  • Hydrogen from surface-based electrolysis is implicated in the operation of high-speed magneto-ionic devices. Functionalizing this discovery, a new family of potentially high-speed, high-efficiency ionic devices is born.

    • Dustin A. Gilbert
    • Alexander J. Grutter
    News & Views
  • A crystal structure with one-dimensional order is identified in oxide ceramics, which is distinguished from the well-known categories of solid structures and potentially provides unexpected properties.

    • Eric A. Stach
    News & Views
  • Structural transitions departing from the known phases of MoTe2 are induced by applying a vertical electric field to multilayers of this material. These distorted structures show distinct conducting states that can be used for resistive memories.

    • Daniel A. Rehn
    • Evan J. Reed
    News & Views
  • Macrophage confinement reduces the ‘late’ inflammatory gene response to lipopolysaccharide through myocardin-related transcription factor, an actin-binding transcription factor.

    • Wendy F. Liu
    News & Views
  • A method to selectively grow pure metallic-phase monolayer transition metal dichalcogenides marks an important step towards industrially viable nano-(opto)electronic technologies based on two-dimensional materials and their hierarchical assemblies.

    • Aditya D. Mohite
    • Jean-Christophe Blancon
    News & Views
  • Sputtering brittle bismuth telluride onto webs of single-walled carbon nanotubes creates a reliably flexible, high-performance thermoelectric composite.

    • Shawn A. Gregory
    • Mark D. Losego
    News & Views
  • An elastomer sheet with programmed inner channel architecture swiftly shapes into a desired three-dimensional geometry upon the application of pressure.

    • Efi Efrati
    News & Views
  • By combining metal ions, organic linkers and polymers, ordered frameworks with controlled crystallite size can form. When fabricated into membranes, they combine superlative CO2/N2 separation properties with good hydrolytic stability.

    • Joshua D. Moon
    • Benny D. Freeman
    News & Views
  • Although precipitates’ compositions are theoretically determined by thermodynamics, their formation kinetics can also lead to composition variations that allow further structural evolution, making the precipitation path more complex.

    • Emmanuel Clouet
    News & Views
  • Ferroelectric polarization enables the emergence and control of magnetic skyrmions at an oxide interface.

    • Evgeny Y. Tsymbal
    • Christos Panagopoulos
    News & Views
  • A rigid and easily scalable metal–organic framework is shown to be among the most efficient materials for separating ethylene from ethane.

    • Anastasiya Bavykina
    • Jorge Gascon
    News & Views
  • An amphipathic peptide has been engineered and is capable of penetrating the blood–brain barrier as well as possessing a potent antiviral activity against Zika and other mosquito-borne viruses.

    • Jing Zou
    • Pei-Yong Shi
    News & Views
  • By considering the topology of chiral crystals, a new type of massless fermion, connected with giant arc-like surface states, are predicted. Such Kramers–Weyl fermions should manifest themselves in a wide variety of chiral materials.

    • Chandra Shekhar
    News & Views
  • Researchers have developed a graphene plasmonics detector that is suitable for fast-response and high-resolution detection of infrared photons at room temperature.

    • Zhe Fei
    News & Views