Reviews & Analysis

Filter By:

  • By inserting an epitaxial in-plane buffer layer of Bi5FeTi3O15, an artificial flux closure architecture enables ferroelectric polarization from a single unit cell of BaTiO3 or BiFeO3.

    • Neus Domingo
    News & Views
  • Three protein interaction surfaces are computationally designed into one protein subunit to enable their accurate assembly into three-dimensional crystals with user-specified lattice architectures.

    • Eduardo Anaya-Plaza
    • Mauri A. Kostiainen
    News & Views
  • The monolithic 3D integration of wafer-free all-2D-materials-based electronics can produce an AI processor.

    • Fang Wang
    • Weida Hu
    News & Views
  • A traditional physical-reservoir device has limited flexibility and cannot perform well across a range of computing tasks, owing to the fixed reservoir properties of the physical system. However, by exploiting the rich magnetic phase spaces of a single chiral magnet, reservoir properties can be reconfigured. This control enables on-demand optimization of computational performance across diverse machine-learning tasks.

    Research Briefing
  • Chiral single-photon emitters are desirable, versatile tools for quantum information processing. Exploiting proximity to a strain-induced local magnetic field in the van der Waals antiferromagnet NiPS3 enables the emission of high-purity chiral single photons from monolayer WSe2 at zero external magnetic field.

    • Jing Tang
    • Xi Ling
    News & Views
  • An approach to analyse the deformation behaviour of polymer networks provides an enhanced set of structural information, improving our understanding of the elasticity of soft materials.

    • Michael Lang
    News & Views
  • Terahertz photoconductivity measurements coupled with theoretical modelling reveals that thermal transient excitations to more delocalized states enhances hole mobility in organic molecular semiconductors.

    • Zhigang Shuai
    News & Views
  • Lymphatic vessels within and near to tumours facilitate nanoparticle transport out of tumours, with ramifications in the design and implementation of next-generation clinical cancer nanomedicines.

    • Meghan J. O’Melia
    • Susan N. Thomas
    News & Views
  • Non-equilibrium thermodynamics describes activity-stabilized mixed states in complex active-matter systems.

    • Tian Huang
    • Qi Pan
    • Steve Granick
    News & Views
  • An additively manufactured AlSi10Mg alloy shows high fatigue strength, even close to its tensile strength, for micro-sized samples. The fine cells in its inherent three-dimensional network are considered as cages to limit damage accumulation.

    • Christopher Hutchinson
    News & Views
  • Quantum dots couple to form artificial molecules that allow for variable colour emission in response to an electric field.

    • James Cassidy
    • Justin Ondry
    • Dmitri V. Talapin
    News & Views
  • Remotely powered vertical electrochemical transistors are demonstrated to track subtle nerve-cell activity even when the transistor core is fully shielded from the biological environment.

    • C. Eckel
    • R. T. Weitz
    News & Views
  • Oxide glasses can be intrinsically toughened by forming crystal-like, medium-range order clusters, which transform inversely to the amorphous state under stress, exciting multiple shear bands for plastic deformation.

    • Hewei Zhao
    • Lin Guo
    News & Views
  • Self-healing behaviour in a nanotwinned diamond composite, at room temperature, has been quantitatively evaluated through tensile testing. The phenomenon is shown to arise from a transition of atomic interactions from repulsion to attraction and the formation of nanoscale diamond ‘osteoblasts’, in analogy to the process of bone healing in living organisms.

    Research Briefing
  • Inspired by valley pseudospins in two-dimensional materials, high-quality-factor (high-Q) spin–valley states were created through the photonic Rashba-type spin splitting of a bound state in the continuum. This approach enabled the construction of a coherent and controllable spin-optical laser using monolayer-integrated spin–valley microcavities without requiring magnetic fields or cryogenic temperatures.

    Research Briefing
  • Using the van der Waals crystal Sb2O3 as a buffer layer enables the growth of high-κ dielectrics on two-dimensional materials via atomic layer deposition.

    • Yang Liu
    • James C. Hone
    News & Views