Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effector T cell plasticity: flexibility in the face of changing circumstances

Abstract

As more states of CD4 T cell differentiation are uncovered, their flexibility is also beginning to be recognized. Components that control the plasticity of CD4 T cell populations include cellular conditions, clonality, transcriptional circuitry and chromatin modifications. Appearance of cellular flexibility may arise from truly flexible genetic programs or, alternatively, from heterogeneous populations. New tools will be needed to define the rules that allow or prohibit cellular transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reinforcement and destabilization of CD4+ T cell subsets.
Figure 2: Transitions of CD4+ T cell subsets.
Figure 3: Transcriptional circuits can stabilize or destabilize CD4+ T cell subsets.
Figure 4: Possible transcription factor interactions regulating intermediate CD4+ T cell transitions.

Similar content being viewed by others

References

  1. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  2. Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bettelli, E. & Kuchroo, V.K. IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J. Exp. Med. 201, 169–171 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28, 29–39 (2008).

    CAS  PubMed  Google Scholar 

  9. Josefowicz, S.Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616–625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Curotto de Lafaille, M.A. & Lafaille, J.J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    CAS  PubMed  Google Scholar 

  11. Vinuesa, C.G., Tangye, S.G., Moser, B. & Mackay, C.R. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5, 853–865 (2005).

    CAS  PubMed  Google Scholar 

  12. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, C.H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193, 1373–1381 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).

    CAS  PubMed  Google Scholar 

  16. Nurieva, R.I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    CAS  PubMed  Google Scholar 

  18. Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fazilleau, N., Mark, L., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Follicular helper T cells: lineage and location. Immunity 30, 324–335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    CAS  PubMed  Google Scholar 

  21. Lu, L.F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    CAS  PubMed  Google Scholar 

  22. Nowak, E.C. et al. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206, 1653–1660 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA 106, 12885–12890 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    CAS  PubMed  Google Scholar 

  25. Trifari, S., Kaplan, C.D., Tran, E.H., Crellin, N.K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 10, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  26. Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    CAS  PubMed  Google Scholar 

  27. Gor, D.O., Rose, N.R. & Greenspan, N.S. TH1–TH2: a procrustean paradigm. Nat. Immunol. 4, 503–505 (2003).

    CAS  PubMed  Google Scholar 

  28. Murphy, K.M. In search of the CTD. Nat. Immunol. 4, 645 (2003).

    CAS  PubMed  Google Scholar 

  29. Sornasse, T., Larenas, P.V., Davis, K.A., de Vries, J.E. & Yssel, H. Differentiation and stability of T helper 1 and 2 cells derived from naive human neonatal CD4+ T cells, analyzed at the single-cell level. J. Exp. Med. 184, 473–483 (1996).

    CAS  PubMed  Google Scholar 

  30. Manetti, R. et al. Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. J. Exp. Med. 179, 1273–1283 (1994).

    CAS  PubMed  Google Scholar 

  31. Ahmadzadeh, M. & Farber, D.L. Functional plasticity of an antigen-specific memory CD4 T cell population. Proc. Natl. Acad. Sci. USA 99, 11802–11807 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Paliard, X. et al. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J. Immunol. 141, 849–855 (1988).

    CAS  PubMed  Google Scholar 

  33. Sundrud, M.S. et al. Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J. Immunol. 171, 3542–3549 (2003).

    CAS  PubMed  Google Scholar 

  34. Szabo, S.J., Jacobson, N.G., Dighe, A.S., Gubler, U. & Murphy, K.M. Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2, 665–675 (1995).

    CAS  PubMed  Google Scholar 

  35. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    CAS  PubMed  Google Scholar 

  36. Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

    CAS  PubMed  Google Scholar 

  37. Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    CAS  PubMed  Google Scholar 

  38. Wu, C.Y. et al. Distinct lineages of TH1 cells have differential capacities for memory cell generation in vivo. Nat. Immunol. 3, 852–858 (2002).

    CAS  PubMed  Google Scholar 

  39. Lohning, M. et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205, 53–61 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol. 4, 78–86 (2003).

    CAS  PubMed  Google Scholar 

  41. Zhou, L., Chong, M.M. & Littman, D.R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    CAS  PubMed  Google Scholar 

  42. Bruno, L. et al. Runx proteins regulate Foxp3 expression. J. Exp. Med. 206, 2329–2337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Benson, M.J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R.J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, Y.K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martin-Orozco, N., Chung, Y., Chang, S.H., Wang, Y.H. & Dong, C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur. J. Immunol. 39, 216–224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hegazy, A.N. et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity 32, 116–128 (2010).

    CAS  PubMed  Google Scholar 

  52. Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494 (2000).

    CAS  PubMed  Google Scholar 

  53. Moser, M. & Murphy, K.M. Dendritic cell regulation of TH1–TH2 development. Nat. Immunol. 1, 199–205 (2000).

    CAS  PubMed  Google Scholar 

  54. Torchinsky, M.B., Garaude, J., Martin, A.P. & Blander, J.M. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458, 78–82 (2009).

    CAS  PubMed  Google Scholar 

  55. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    CAS  PubMed  Google Scholar 

  56. Roark, C.L., Simonian, P.L., Fontenot, A.P., Born, W.K. & O'Brien, R.L. γδ T cells: an important source of IL-17. Curr. Opin. Immunol. 20, 353–357 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    CAS  PubMed  Google Scholar 

  58. Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  59. Scharton, T.M. & Scott, P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178, 567–577 (1993).

    CAS  PubMed  Google Scholar 

  60. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    CAS  PubMed  Google Scholar 

  61. Perrigoue, J.G. et al. MHC class II–dependent basophil–CD4+ T cell interactions promote TH2 cytokine–dependent immunity. Nat. Immunol. 10, 697–705 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10, 713–720 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat. Immunol. 10, 706–712 (2009).

    CAS  PubMed  Google Scholar 

  64. Finkelman, F.D. Basophils as TH2-inducing APCs: the dog can sing but is it a diva? Immunol. Cell. Biol. 87, 568–570 (2009).

    Google Scholar 

  65. Chang, J.T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    CAS  PubMed  Google Scholar 

  66. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    CAS  PubMed  Google Scholar 

  67. Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    CAS  PubMed  Google Scholar 

  68. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    CAS  PubMed  Google Scholar 

  69. Hwang, E.S., Szabo, S.J., Schwartzberg, P.L. & Glimcher, L.H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    CAS  PubMed  Google Scholar 

  70. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wei, L., Laurence, A., Elias, K.M. & O'Shea, J.J. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem. 282, 34605–34610 (2007).

    CAS  PubMed  Google Scholar 

  72. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    CAS  PubMed  Google Scholar 

  73. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    CAS  PubMed  Google Scholar 

  76. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ansel, K.M., McHeyzer-Williams, L.J., Ngo, V.N., McHeyzer-Williams, M.G. & Cyster, J.G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kikuchi, M. et al. Identification of negative regulatory regions within the first exon and intron of the BCL6 gene. Oncogene 19, 4941–4945 (2000).

    CAS  PubMed  Google Scholar 

  79. Arguni, E. et al. JunD/AP-1 and STAT3 are the major enhancer molecules for high Bcl6 expression in germinal center B cells. Int. Immunol. 18, 1079–1089 (2006).

    CAS  PubMed  Google Scholar 

  80. Tokoyoda, K. et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30, 721–730 (2009).

    CAS  PubMed  Google Scholar 

  81. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Oberg, M., Bergander, L., Hakansson, H., Rannug, U. & Rannug, A. Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci. 85, 935–943 (2005).

    PubMed  Google Scholar 

  83. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    CAS  PubMed  Google Scholar 

  85. Quintana, F.J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  86. Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y. & Kishimoto, T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl. Acad. Sci. USA 105, 9721–9726 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Denison, M.S. & Nagy, S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43, 309–334 (2003).

    CAS  PubMed  Google Scholar 

  88. Rannug, A. & Fritsche, E. The aryl hydrocarbon receptor and light. Biol. Chem. 387, 1149–1157 (2006).

    CAS  PubMed  Google Scholar 

  89. Roubenoff, R., Cote, T., Watson, R., Levin, M.L. & Hochberg, M.C. Eosinophilia-myalgia syndrome due to L-tryptophan ingestion. Report of four cases and review of the Maryland experience. Arthritis Rheum. 33, 930–938 (1990).

    CAS  PubMed  Google Scholar 

  90. Farrar, J.D. et al. An instructive component in T helper cell type 2 (Th2) development mediated by GATA-3. J. Exp. Med. 193, 643–650 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lexberg, M.H. et al. Th memory for interleukin-17 expression is stable in vivo. Eur. J. Immunol. 38, 2654–2664 (2008).

    CAS  PubMed  Google Scholar 

  92. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wilson, C.B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).

    CAS  PubMed  Google Scholar 

  97. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    CAS  PubMed  Google Scholar 

  98. Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Campos, E.I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599 (2009).

    CAS  PubMed  Google Scholar 

  100. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  101. Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007).

    CAS  PubMed  Google Scholar 

  102. Xu, M. et al. Partitioning of histone H3–H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98 (2010).

    CAS  PubMed  Google Scholar 

  103. Bix, M. & Locksley, R.M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 (1998).

    CAS  PubMed  Google Scholar 

  104. Riviere, I., Sunshine, M.J. & Littman, D.R. Regulation of IL-4 expression by activation of individual alleles. Immunity 9, 217–228 (1998).

    CAS  PubMed  Google Scholar 

  105. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  106. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  107. Spilianakis, C.G. & Flavell, R.A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    CAS  PubMed  Google Scholar 

  108. Barski, A. & Zhao, K. Genomic location analysis by ChIP-Seq. J Cell. Biochem. 107, 11–18 (2009).

    CAS  PubMed  Google Scholar 

  109. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schraml, B.U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31, 941–952 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge T. Murphy for discussion and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth M Murphy or Brigitta Stockinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, K., Stockinger, B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol 11, 674–680 (2010). https://doi.org/10.1038/ni.1899

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing