Commentary in 2000

Filter By:

Article Type
Year
  • “They all talked at once, their voices insistent and contradictory and impatient, making of unreality a possibility, then a probability, then an incontrovertible fact, as people will when their desires become words.” —W. Faulkner, The Sound and the Fury, 1929

    • Kenneth M. Weiss
    • Joseph D. Terwilliger
    Commentary
  • In model organisms, chemical mutagenesis provides a powerful alternative to natural, polygenic variation (for example, quantitative trait loci (QTLs)) for identifying functional pathways and complex disease genes. Despite recent progress in QTLs, we expect that mutagenesis will ultimately prove more effective because the prospects of gene identification are high and every gene affecting a trait is potentially a target.

    • Joseph H. Nadeau
    • Wayne N. Frankel
    Commentary
  • Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.

    • Michael Ashburner
    • Catherine A. Ball
    • Gavin Sherlock
    Commentary